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Resumo

Nesta dissertação apresenta-se, de forma detalhada e auto-contida, a solução do problema de Yam-

abe. Historicamente, problema de Yamabe surgiu quando Hidehiko Yamabe queria resolver a conjectura

de Poincaré. Matematicamente, o problema de Yamabe consiste em responder à seguinte pergunta:

dada uma variedade Riemanniana compacta e conexa, será que existe uma métrica na variedade con-

forme à original que tenha curvatura escalar constante? Analiticamente, o problema de Yamabe é

equivalente a resolver uma equação com derivadas parciais elı́ptica não linear numa variedade Rie-

manniana. Ao longo da dissertação seguimos de perto, adicionando todos os detalhes, o artigo acerca

do problema de Yamabe de John M. Lee e Thomas H. Parker [13].

Palavras-chave: Análise Geométrica, Equações com Derivadas Parciais Elı́pticas, Geome-

tria Riemanniana, Geometria Conforme, Funções de Green.
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Abstract

This dissertation aims to present, in detail and in a self-contained form, the solution to the Yamabe

problem. From a historical point of view, the Yamabe problem came to be when, in 1960 Hidehiko Yam-

abe was interested in solving the Poincaré conjecture. Mathematically speaking, the Yamabe problem

consists in answering the following: given a compact, connected Riemannian manifold, is there a metric

conformal to the original one on the manifold that has constant scalar curvature? From an analytical

point of view, the Yamabe problem is equivalent to solving a nonlinear elliptic partial differential equation

on the Riemannian manifold. Throughout this dissertation, we followed very closely John M. Lee’s and

Thomas H. Parker’s paper on the Yamabe problem [13] where we have added all the details.

Keywords: Geometric Analysis, Elliptic Partial Differential Equations, Riemannian Geometry,

Conformal Geometry, Green Functions.
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Nomenclature

(gij) Components of the inverse matrix of g = (gij).

(M, g) Riemannian manifold.

2∗ = 2n
n−2 Critical exponent of the Sobolev inequality in Rn

∆ Euclidean Laplacian, given by ∆f = −∂iif

∆g Laplace-Beltrami operator of (M, g), given in local coordinates by ∆gf = − 1√
det(gij)

∂i
(
gij
√
det(gij)∂jf

)
.

Γ Green function of the conformal Laplacian.

Γkij Christoffel symbols of the Levi-Civita connection.

⟨·, ·⟩ Inner product in a Riemannian Manifold (M, g).

Lg Conformal Laplacian of the metric g, defined as Lg = a∆g + S, where a = 4n−1
n−2 .

∇ Levi-Civita connection.

ωn−1 Volume of the Euclidean unit sphere in Rn.

R Curvature operator of Levi-Civita connection.

Ric Ricci tensor.

Rm Riemann curvature tensor.

Rn Standard Euclidean space equipped with the standard Euclidean metric.

◦
Ric Traceless Ricci tensor.

W Weyl tensor.

ds2 = dx1 ⊗ dx1 + . . .+ dxn ⊗ dxn Euclidean metric in Rn.

dVg Riemannian volume form of (M, g).

S Scalar Curvature of (M, g).
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Chapter 1

Introduction

Hidehiko Yamabe, wanting to solve the Poincaré Conjecture (see [4]), thought that a good first step

would be to, given a compact, connected smooth Riemannian manifold, equip that manifold with a

Riemannian metric of constant scalar curvature. In this setting, Yamabe considered the simplest change

of metric, which is a conformal transformation, and in 1960 he sought to prove in [19] that every compact

connected Riemannian manifold (M, g) of dimension dimM ≥ 3 admits a metric conformal to g that

has constant scalar curvature. From an analytical point of view, this problem is equivalent to solving a

nonlinear elliptic partial differential equation on a Riemannian manifold. Indeed, if (M, g) is a compact,

connected Riemannian manifold of dimension n, every metric conformal to g can uniquely be written as

g̃ = φ2∗−2g for some (unique) positive smooth function φ in M , where 2∗ = 2n
n−2 is the critical Sobolev

exponent. So, the transformation law (A.0.19) yields that the scalar curvature of the metric g̃, S̃, is given

by

S̃ = φ1−2∗
(
4(n− 1)

n− 2
∆gφ+ Sφ

)
, (1.0.1)

where S denotes the scalar curvature of g and ∆g denotes the Laplace-Beltrami operator, that, in local

coordinates {xi}, takes the form ∆gφ = −det(gij)
−1/2∂i

(
gij det(gij)

1/2∂jφ
)
. Thus, finding a conformal

metric with constant scalar curvature is equivalent to finding a smooth positive function on M for which

the right-hand side of (1.0.1) is constant. In the very same paper where Yamabe conjectured the ex-

istence of such a metric, he attempted to solve this problem. Yamabe’s approach was to formulate a

variational problem that, if solved, would imply his statement. Indeed, Yamabe considered the functional

Q(g̃) :=

∫
M

S̃dVg̃(∫
M

dVg̃

)2/2∗
, (1.0.2)
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where g̃ is a metric conformal to g. Due to the one-to-one correspondence between conformal metrics

and smooth positive functions on M , by setting Qg(φ) := Q(φ2∗−2g), equation (1.0.1) implies that

Qg(φ) =

∫
M

aφ∆gφ+ Sφ2dVg(∫
M

φ2∗dVg

)2/2∗
=

∫
M

a|∇φ|2 + Sφ2dVg(∫
M

φ2∗dVg

)2/2∗
,

where a := 4n−1
n−2 . Yamabe noted that the Euler-Lagrange equation for this functional is precisely equa-

tion (1.0.1). Indeed, if φ is a positive, smooth critical point of Qg, then φ is a solution of (1.0.1) with

S̃ = Qg(φ), as shown in (2.0.7).

Yamabe then defined the now-called Yamabe invariant:

λ(M) = inf{Qg(φ) : φ ∈ C∞(M) positive}.

As we will see in Chapter 2, in the definition of λ(M) we can extend the space of functions to H := {u ∈

H1(M) : u ̸= 0} (which is a Hilbert space). This gives rise to the problem of minimizing Qg over H.

Associated with this problem is the Yamabe equation

a∆gu+ Su = λ(M)u2
∗−2, on M. (1.0.3)

The operator a∆g + S is usually called the conformal Laplacian, and from now onwards we will denote

it by Lg. This nomenclature comes from the fact that when g̃ = φ2∗−2g is a conformal metric to g, then

Lg̃(φ−1u) = φ1−2∗Lgu.

Yamabe presented in [19] a solution to this variational problem and (1.0.3) using methods from Cal-

culus of Variations and Elliptic Partial Differential Equations.

Later on, in the same year, Yamabe died from a stroke (see [9]), just months after accepting a full

professorship at Northwestern University, believing his solution of the Yamabe problem was correct.

However, our story does not end here, for in 1968 Neil Trudinger found a mistake in Yamabe’s proof

(see [18]), and was able to adapt Yamabe’s proof with an extra assumption imposed on the manifold.

More precisely, he proved that if λ(M) is below a certain (non-explicit) positive threshold, Yamabe’s

proof would work, and so Yamabe’s conjecture was proved correct when λ(M) ≤ 0. However, the

general question remained open: does every compact, connected Riemannian manifold of dimension

greater or equal to 3 admit a conformal metric of constant scalar curvature?

A few years later, in 1976, Thierry Aubin extended Trudinger’s results in [3]. Indeed, Aubin showed

that the Yamabe invariant on any compact, connected Riemannian manifold (M, g) satisfies λ(M) ≤

λ(Sn). In the same paper, Aubin also showed that the threshold obtained by Trudinger could be taken to

be λ(Sn). The combined efforts of Yamabe, Trudinger and Aubin put together led to the following:

Theorem 1.0.1 (Yamabe, Trudinger, Aubin). For any compact, connected Riemannian manifold of di-
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mension n ≥ 3, we have λ(M) ≤ λ(Sn). Furthermore, if λ(M) < λ(Sn), then there is a conformal metric

to g with constant scalar curvature equal to λ(M), where Sn is the standard sphere.

We will present a proof of this theorem, which is the one from [13]. To prove this theorem, the idea is

to perturb the Yamabe equation (1.0.3) with a parameter such that, as the parameter goes to 2∗, we get

closer and closer to the Yamabe equation (1.0.3). This was Yamabe’s original plan (see [19]). Indeed,

he considered the family of problems

a∆gu+ Su = λs(M)us−1 on M, (1.0.4)

where s ∈ [2, 2∗[, and

λs(M) := inf{Qs
g(φ) : φ ∈ H1(M) \ {0}}, (1.0.5)

where Qs
g(φ) =

∫
M

a|∇φ|2 + Sφ2dVg∫
M

φsdVg

2/s . Using classical techniques from the theory of Elliptic Partial

Differential Equations and the Direct Method of the Calculus of Variations, Yamabe showed in [19] that

these problems have a smooth positive solution. Using the assumption λ(M) < λ(Sn), one is able to

show that the family of solutions {us} is uniformly bounded in Lr(M) for some r > 2∗. This was originally

proved by Trudinger in [18] (where he proved the result when λ(M) is small enough) and Aubin in [3]

extended Trudinger’s result for the case λ(M) < λ(Sn). Finally, one proceeds to apply the regularity

theory followed by the Arzelà–Ascoli Theorem to show that along a subsequence the solutions {us}

converge in the C2−norm along a subsequence to a solution of the Yamabe equation. The mistake

in Yamabe’s attempt was to assume that the sequence {us} was uniformly bounded whether or not

λ(M) < λ(Sn).

This theorem breaks the problem of minimizing Qg into two smaller problems, the first one being

when the manifold we are working with is the standard sphere or conformal to the standard sphere, the

second one being all the other cases.

In the conformal class of the sphere (the case where λ(M) = λ(Sn)), we also use the family of

solutions {us}, but a much more delicate method is needed to prove the existence of a solution of the

Yamabe equation.

In the remaining cases, it turns out that, when (M, g) is not conformal to the standard sphere, we

do have λ(M) < λ(Sn). Proving this, however, is anything but trivial. In fact, to prove this fact took the

combined efforts of Aubin [2] and Schoen [16]. Their strategy is, nowadays, a classical one, to construct

a test function. Their methods, however, are very different. This is, in part, because their proofs concern

different ”categories” of manifolds with very distinct geometries. More precisely, Aubin in 1976 showed

in [2] the following result:

Theorem 1.0.2. Let (M, g) is a compact, connected, not locally conformally flat Riemannian manifold of

dimension dimM ≥ 6, then λ(M) < λ(Sn).

Schoen then showed in 1984 in [16]:
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Theorem 1.0.3. Let (M, g) is a compact, connected, Riemannian manifold such that dimM = 3, 4, 5 or

(M, g) is locally conformally flat and M is not conformal to the standard sphere, then λ(M) < λ(Sn).

Later, in 1987, John M. Lee and Thomas H. Parker published a now widely celebrated paper titled

“The Yamabe Problem” [13], where they presented, for the first time, in one place, the complete solution

to the Yamabe problem. However, they presented a more unified approach to showing that λ(M) <

λ(Sn). Unlike Aubin and Schoen, who considered completely different test functions, Lee and Parker,

inspired by the work of Schoen in [16], managed to show, using one test function, that λ(M) < λ(Sn)

when (M, g) is not conformal to the standard sphere. Their method employs new tools, conformal

normal coordinates, which we explore in great detail in chapter 4, that not only massively simplify the

local geometry but also allow us to obtain an expansion of the Green function of the conformal Laplacian

Lg. In this dissertation, apart from the occasional detour, we will follow very closely Lee and Parker’s

paper [13], adding all the missing details and on occasion shortening their route.

We now give a brief description of the organisation of this dissertation, as well as the contents of

each chapter. In Chapter 2 we will further explore the Yamabe invariant and prove the following theorem

that is due to Aubin in [3]:

Theorem 1.0.4. For any compact, connected Riemannian manifold (M, g) of dimension n ≥ 3, we have

λ(M) ≤ λ(Sn).

Furthermore, we will explore a curious connection between the sharp Sobolev constant in Rn and

the Yamabe invariant in the standard sphere, and present a result, due to Obata [14], that completely

characterises all the solutions of the Yamabe problem on the standard sphere. In other words, Obata’s

result gives a description of all the metrics on the sphere conformal to the standard metric that possesses

constant scalar curvature.

In Chapter 3, we present the combined work of Yamabe, Trudinger and Aubin that shows that the con-

dition λ(M) < λ(Sn) (in the setting described above) is sufficient to ensure the existence of a conformal

metric with constant scalar curvature.

In Chapter 4, we present one of Lee and Parker’s original contributions, by developing the neces-

sary machinery for the construction of the test function done in [13]. More specifically, we present the

geometrical construction of normal coordinates and conformal normal coordinates (these are normal

coordinates with respect to a metric that is conformal to the original one) and some very powerful and

useful properties of these coordinates; in particular, we show that for every positive integer N ∈ N there

are conformal normal coordinates, {xi}, associated to a conformal metric g̃ such that

det(g̃ij) = 1 +O(rN ),

where r = |x| is the geodesic distance. Recall that a Riemannian manifold (M, g) is said to be lo-

cally conformally flat if it is locally conformal to Rn. An immediate application of the coordinates is the

following:

Theorem 1.0.5. Let (M, g) be a compact, connected, non-locally conformally flat Riemannian manifold
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with dimension dimM ≥ 6, then λ(M) < λ(Sn).

Furthermore, we will use these coordinates to obtain an asymptotic expansion of a multiple of the

Green function of the conformal Laplacian, Lg.

We also present a generalization of the well-known stereographic projection in the sphere to a class

of manifolds, still called stereographic projection, and explore some of its properties.

In Chapter 5, we apply all the tools developed in Chapter 4 to the construction of the test function.

Finally, in Chapter 6 we present the culmination of all the previous chapters, the complete solution

of the Yamabe problem. To do this, we introduce the concept of the mass of an asymptotically flat Rie-

mannian manifold and present the well-known Positive Mass Theorem, relating it to the work developed

in Chapter 5. Finally, we apply the aforementioned theorem to prove that λ(M) < λ(Sn) when either

dimM = 3, 4, 5 or (M, g) is locally conformally flat, and therefore get a solution to the Yamabe problem.

This works concludes with two appendices where we list all the basic facts about Riemannian Ge-

ometry and Partial Differential Equations used in the previous chapters.
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Chapter 2

The Yamabe Problem and the Sphere

Let (M, g) be a compact, connected Riemannian manifold of dimension n ≥ 3. To solve the Yamabe

Problem we need to find a conformal metric with constant scalar curvature. As stated in the Introduc-

tion any conformal metric to g can uniquely be written as φ2∗−2g for some smooth positive function φ.

Then the transformation laws for the scalar curvature A.0.19 implies that solving the Yamabe Problem is

equivalent to finding a λ ∈ R for which there is a smooth positive solution of the Yamabe equation

a∆gφ+ Sφ = λφ2∗−1, in M (2.0.1)

but the task of just finding such a constant and solution is rather complicated. However, we can formulate

this problem as a minimization problem. To see this, we introduce a number that will be central in the

analysis of this problem.

Definition 2.0.1. Let (M, g) be a compact, connected Riemannian manifold of dimension n ≥ 3. For g̃

a conformal metric to g we define the Yamabe functional

Q(g̃) :=

∫
M

S̃dVg̃(∫
M

dVg̃

)2/2∗
, (2.0.2)

where S̃ is the scalar curvature of g̃ and dVg̃ is the Riemannian volume form of (M, g̃). Now define the

Yamabe invariant:

λ(M) := inf{Q(g̃) : g̃ conformal to g}. (2.0.3)

Note that, by definition λ(M) is a conformal invariant of (M, g), and recall that every conformal metric

to g has the form g̃ = φ2∗−2g. Using the transformation laws in Appendix A, we can write λ(M) as an

infimum of a certain functional over Sobolev spaces. Indeed, for φ > 0 smooth and g̃ = φ2∗−2g the

transformation law (A.0.19) for the scalar curvature gives

S̃ = φ2−2∗
(
S + 4

n− 1

n− 2
φ−1∆gφ

)
, (2.0.4)
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and thus, setting a = 4n−1
n−2

Q(g̃) =

∫
M

φ2−2∗
(
S + aφ−1∆gφ

)
dVg̃

∥φ∥22∗
=

∫
M

φ2−2∗
(
S + aφ−1∆gφ

)
φ2∗dVg

∥φ∥22∗

=

∫
M

Sφ2 + aφ∆gφdVg

∥φ∥22∗
=

∫
M

a|∇φ|2 + Sφ2dVg

∥φ∥22∗
.

Noting that φ2 ∈ L2∗/2(M), Hölder’s inequality implies |
∫
M
Sφ2dVg| is bounded by a multiple of ∥φ∥22∗

and so by denoting Qg(φ) = Q(φ2∗−2g) we have that Qg is bounded from below:

Qg(φ) =

∫
M
a|∇φ|2 + Sφ2dVg

∥φ∥22∗
≥
∫
M
a|∇φ|2dVg − C∥φ∥22∗

∥φ∥22∗
≥ C,

for some positive constant that depends only on S. Due to the definition of λ(M) we have:

λ(M) = inf{Qg(φ) : φ ∈ C∞(M) positive}. (2.0.5)

Furthermore, due to the density of C∞(M) in H1(M) and the fact that Qg(|φ|) = Qg(φ) we conclude that

λ(M) = inf
φ∈H1(M)\{0}

Qg(φ) = inf
φ∈H1(M)
∥φ∥2∗=1

Qg(φ). (2.0.6)

Define E(φ) :=

∫
M

a|∇φ|2 + Sφ2dVg and call Qg the Yamabe functional of (M, g).

For any φ,ψ ∈ H1(M) \ {0}, integration by parts yields

d

dt
Qg(φ+ tψ)|t=0 =

∥φ∥22∗ d
dt |t=0

E(φ+ tψ)− E(t) ddt |t=0
∥φ+ tψ∥22∗

∥φ∥42∗

= 2

∫
M

(
a∆gφ+ Sφ− E(φ)

∥φ∥2∗2∗
φ2∗−1

)
ψdVg

∥φ∥22∗
.

(2.0.7)

So we see that φ ∈ C∞(M) \ {0} is a critical point of Qg if and only if φ is a solution of the Yamabe

equation 2.0.1 with λ = E(φ)

∥φ∥2∗
2∗

. In particular, if λ(M) is achieved by some positive smooth solution, the

minimizing function is a critical point of the functional Qg, and so it solves the Yamabe equation with

λ = λ(M).

The analysis of the Yamabe problem depends upon a precise understanding of the problem in the

model case of the sphere Sn and in the relation between λ(Sn) and λ(M). In fact, we have the following

result due to Aubin in [3] which we will prove below:

Theorem 2.0.2. If (M, g) is any compact, connected Riemannian manifold of dimension n ≥ 3, then

λ(M) ≤ λ(Sn).

To prove this theorem we need to explore the Yamabe problem in the standard sphere and its relation

to the sharp Sobolev constant. First, we explore the sharp constant in the Sobolev inequality.
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2.1 Sharp Sobolev constant

The Yamabe Problem in the sphere is related to the problem of finding minimizers for the best con-

stant in the Sobolev inequality on Rn. In this section, we explore this relationship quantitatively, we also

show that λ(M) ≤ λ(Sn) for any compact, connected Riemannian manifold (M, g) of dimension n.

We start by writing the standard metric on Sn in local coordinates induced by the usual stereographic

projection. Let P = (0, ..., 0, 1) be the north pole on Sn ⊂ Rn+1. The stereographic projection

σ : Sn \ {P} → Rn, σ(ζ1, . . . , ζn, ξ) =
(ζ1, . . . , ζn)

1− ξ

is a chart for Sn compatible with the usual differential structure on Sn, and therefore, the stereographic

projection is a conformal diffeomorphism as the next lemma shows. The inverse map to the stereo-

graphic projection, ρ = σ−1 is given by ρ(x1, ..., xn) = 1
|x|2+1 (2x

1, ..., 2xn, |x|2 − 1).

Lemma 2.1.1. Let g denote the standard metric in Sn. Then

(ρ∗g)ij = 4(|x|2 + 1)−2δij . (2.1.1)

Proof. Let x ∈ Rn and V,W ∈ TxRn. By definition, ρ∗g(V,W ) = g(ρ∗V, ρ∗W ) = g(dρ(V ), dρ(W )), and

dρ(V ) = d
dt |t=0

ρ(x+ tV ). Write V = (V 1, ..., V n) (here we are using the identification TxRn ∼= Rn).Then,

dρ(V ) =
d

dt |t=0

[
1

|x+ tV |2 + 1

(
2(x1 + tV 1), . . . , 2(xn + tV n), |x+ tV |2 − 1

)]
=

(
2V 1

|x|2 + 1
− 4x1⟨x, V ⟩

(|x|2 + 1)2
, . . . , 2

V n

|x|2 + 1
− 4xn⟨x, V ⟩

(|x|2 + 1)2
, 4

⟨x, V ⟩
(|x|2 + 1)2

)
=

2

|x|2 + 1
(V, 0)− 4⟨x, V ⟩

(|x|2 + 1)2
(x, 0) +

4⟨x, V ⟩
(|x|2 + 1)2

(0, . . . , , 0, 1)

=
2

|x|2 + 1
(V, 0)− 4⟨x, V ⟩

(|x|2 + 1)2
(x,−1),

where, ⟨x, V ⟩ =
∑
j x

jV j denotes the Euclidean inner product in Rn. Since g is obtained from the

Euclidean metric in Rn+1 by restricting it to Sn we have that

ρ∗g(V,W ) = g(ρ∗V, ρ∗W )

=
1

(|x|2 + 1)2

[
2
(
V T 0

)
− ⟨x, V ⟩

|x|2 + 1

(
4xT −4

)]
In+1

2
W

0

− ⟨x,W ⟩
|x|2 + 1

4x

−4


=

1

(|x|2 + 1)2

(
4V TW − 16

⟨x, V ⟩⟨x,W ⟩
|x|2 + 1

+
⟨x, V ⟩⟨x,W ⟩(16|x|2 + 16)

(|x|2 + 1)2

)
=

4

(|x|2 + 1)2
V TW.

So ρ∗g = 4
(|x|2+1)2 ds

2.

The pullback metric computed in the previous lemma (which is just the round metric expressed in the

coordinates induced by the stereographic projection) can be written as 4u2
∗−2

1 ds2, where

9



u1(x) = (|x|2 + 1)(2−n)/2.

Using the stereographic projection, one can see that the group of conformal diffeomorphisms of the

sphere is generated by rotations, together with maps of the form σ−1τvσ and σ−1δϵσ, where

τv, δϵ : Rn → Rn denote the translation by v and dilation by α > 0, respectively:

τv(x) = x− v, δα(x) = α−1x.

Under dilations the spherical metric on Rn (the standard metric on the sphere) transforms as

δ∗αρ
∗g = 4u2

∗−2
α ds2, where uα(x) =

(
|x|2 + α2

α

)(2−n)/2

. (2.1.2)

It is a well-known fact the sphere with the round metric has constant scalar curvature (S = n(n−1)
r2 for a

sphere of radius r). And so the Yamabe problem in the conformal class of the standard sphere is already

solved. What is not yet solved is the problem of achieving λ(Sn). What is not immediately obvious is that

the standard metric is a minimiser of the Yamabe functional, this will be proved using the results from

this chapter and the ones from Chapter 3. To see this, we start by relating the Yamabe functional (and

its minimization) to the Sobolev inequality in Rn. By the density of C∞(Sn) in H1(Sn) we can conclude

that λ(Sn) is actually the infimum over H1(Sn) \ {0}:

λ(Sn) = inf
φ∈H1(Sn)\{0}

∫
Sn

(
a|∇φ|2 + Sφ2

)
dVg(∫

Sn
|φ|2

∗
dV g

)2/2∗
. (2.1.3)

For φ ∈ C∞(Sn) let φ denote the weighted pull-back function on Rn defined by φ = u1ρ
∗φ. We then

have

ρ∗(φ2∗−2g) = 4φ2∗−2ds2,

and

ρ∗(a∆gφ+ Sφ) = au1−2∗

1 ∆φ, on Rn.

Then

∫
Sn

(
aφ∆gφ+ Sφ2

)
dVg =

∫
Rn

(
au1−2∗

1 ∆φ
)
2nu2

∗

1 dx = 2n
∫
Rn

aφ∆φdx = 2n
∫
Rn

a|∇φ|2dx, (2.1.4)

where, in the last integral, ∇ denotes the usual Euclidean gradient. Moreover,

∫
Sn

|φ|2
∗
dVg =

∫
Rn

2n|ρ∗φ|2
∗
u2

∗

1 dx = 2n
∫
Rn

|φ|2
∗
dx.

Now by recalling the definition of the space D1,2(Rn) (Definition B.0.17), its properties and the fact that

C∞
c (Rn) is dense in D1,2(Sn) and taking (2.1.4) into account we have:

Proposition 2.1.2. The map J : H1(Sn) → D1,2(Rn) given by φ → u1ρ
∗φ is an isomorphism. And if

we multiply u1 by an appropriate constant we conclude that there is an isometric isomorphism between

10



H1(Sn) and D1,2(Rn).

Therefore,

λ(Sn) = inf
φ∈D1,2(Rn)\{0}

∫
Rn a|∇φ|2dx(∫
Rn |φ|2∗

)2/2∗ (2.1.5)

Denoting the sharp constant of the Sobolev inequality by

σn = inf
φ∈D1,2(Rn)
∥φ∥2∗=1

∥∇φ∥22, (2.1.6)

we have, the following theorem:

Theorem 2.1.3. The n−dimensional Sobolev constant σn is equal to λ(Sn)/a. Thus the sharp form of

the Sobolev inequality in Rn is:

∥φ∥22∗ ≤ a

λ(Sn)
∥∇φ∥22,

for all φ ∈ D1,2(Rn).

In chapter 3 we will show that the standard metric and the conformal metrics δ∗αρ∗g are extremal with

respect to the Yamabe functional, for now we assume this fact and that Theorem 2.1.3 and proceed with

the proof of Theorem 2.0.2.

Proof of Theorem 2.0.2. As we just mentioned, the functions uα satisfy a∥∇uα∥22 = λ(Sn)∥uα∥22∗ on Rn.

For any fixed ϵ > 0, let Bϵ denote the ball of radius ϵ centered at the origin in Rn, and choose a smooth

radial cutoff function 0 ≤ η ≤ 1 supported in B2ϵ, with η ≡ 1 on Bϵ. Consider the smooth compactly

supported function φα = ηuα. Since φα is a radial function,∫
Rn

a|∇φα|2dx =

∫
B2ϵ

(
aη2|∇uα|2 + 2aηuα⟨∇uα,∇η⟩+ au2α|∇η|2

)
dx

≤
∫
Rn

a|∇uα|2dx+ C

∫
Aϵ

(
uα|∂ruα|+ u2α

)
dx,

(2.1.7)

where Aϵ = B2ϵ −Bϵ. To estimate these terms, first note that uα(r) ≤ α(n−2)/2r2−n and, since

∂ruα = (2− n)α−1r

(
α

α2 + r2

)n/2
, (2.1.8)

we also have |∂ruα| ≤ (n− 2)α(n−2)/2r1−n. Thus, for fixed ϵ > 0, the second term in (2.1.7) is O(αn−2)

as α→ 0:

∫
Aϵ

(
uα|∂ruα|+ u2α

)
dx ≤ αn−2

∫
Aϵ

(
r3−2n + r4−2n

)
dx = αn−2ωn−1

∫ 2ε

ε

(
r3−2n+n−1 + r4−2n+n−1

)
dr

≤ Cαn−2,

11



for some positive constant C. As for the first term,

∫
Rn

a|∇uα|2dx = λ(Sn)

(∫
Bϵ

u2
∗

α dx+

∫
Rn\Bϵ

u2
∗

α dx

)2/2∗

≤ λ(Sn)

(
∥φα∥2

∗

2∗ +

∫
Rn\Bϵ

αnr−2ndx

)2/2∗

= λ(Sn)
(
∥φα∥2

∗

2∗ + Cαn
)2/2∗

= λ(Sn)
(
∥φα∥2

∗

2∗ + Cα2∗(n−2)/2
)2/2∗

≤ λ(Sn)∥φα∥22∗ +O(αn−2),

(2.1.9)

where we have used the triangle inequality to obtain the last inequality. So, the Sobolev quotient of φα on

Rn is less than λ(Sn)+O(αn−2). On a compact manifold M , let p ∈M and consider normal coordinates

{xi} centered in p. Let φα = ηuα in these coordinates, extended by zero to a smooth function on M .

Since φ is a radial function and grr ≡ 1 in these coordinates, we have

|∇φα|2 = ⟨∇φα,∇φα⟩ = grr|∂rφα|2 = |∂rφα|2,

i.e. |∇φ|2 = |∂rφ|2 (in a neighbourhood of p). We want to estimate the energy, E(φα). However, the

current situation is not as simple as before due to the extra term of the scalar curvature and the fact

that det(gij) = 1 + O(r2) (where r = |x| is the geodesic distance) in normal coordinates. The previous

estimates then give

E(φα) =

∫
B2ϵ

a|∇φα|2 + Sφ2
αdVg

≤ (1 + Cϵ2)

(
λ(Sn)∥φα∥2L2∗ (Rn) + C1α

n−2 + ∥S∥L∞(M)

∫ 2ϵ

0

∫
Sr

u2αr
n−1dωdr

)
,

(2.1.10)

for some positive constants C,C1. Lemma 2.1.4 below shows, the last term is bounded by a constant

multiple of α. However, we cannot just divide (2.1.10) by ∥φα∥L2∗ (M) and conclude the result, since in

the above inequality ∥φα∥L2∗ (Rn) is not exactly equal to ∥φα∥L2∗ (M). In the context of ∥φα∥L2∗ (Rn) we

are thinking of φα as a function in Rn, while in ∥φα∥L2∗ (M) φα is now a function in M . So we need to

estimate the ratio between ∥φα∥L2∗ (Rn) and ∥φα∥L2∗ (M). To estimate Qg(φα) we need to get a lower

bound for ∥φα∥2L2∗ (M)
:

∥φα∥L2∗ (M) =

(∫
M

φ2∗

α dVg

)2/2∗

≥
(∫

Bϵ

φ2∗

α

√
det(gij)dVg

)2/2∗

≥ (1− Cϵ2)

(∫
Bϵ

φ2∗

α dx

)2/2∗

.

(2.1.11)
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This leads us to estimate ∥φα∥L2∗ (Bϵ) (now we are thinking of φα as a function in Rn):

∫
Bϵ

φ2∗

α dx =

∫
Bϵ

(
α

α2 + |x|2

)n
dx = ωn−1

∫ ϵ

0

(
α

α2 + r2

)n
rn−1dr

= ωn−1

∫ ϵ/α

0

1

(1 + y2)n
yn−1dy.

(2.1.12)

Thus, dividing (2.1.10) by ∥φα∥L2∗ (M) and using (2.1.11) we get

Qg(φα) ≤
1 + Cϵ2

(1− Cϵ2)1/2∗
λ(Sn) +

C1α
n−2

(1− Cϵ2)1/2∗∥φ∥L2∗ (Bϵ)

+
C2α

(1− Cϵ2)1/2∗∥φ∥L2∗ (Bϵ)

, (2.1.13)

for some positive constant C2. Looking at (2.1.12) and (2.1.11), we see that if we chose α = ϵ small, the

L2∗(M)−norm of φα is controlled from above and below by constants independent of ϵ and α. So

Qg(φα) ≤
1 + Cϵ2

(1− Cϵ2)1/2∗
λ(Sn) + Cα ≤ 1 + Cϵ2

1− Cϵ2
λ(Sn) + Cα

= λ(Sn) + Cα,

(2.1.14)

for some positive constant C > 0 (that is independent of α) and ϵ > 0 sufficiently small. This proves that

λ(M) ≤ λ(Sn) since we are taking the infimum.

The following lemma will be used again in Chapter 4, and so we state and prove it in its full generality.

Lemma 2.1.4. Fix ϵ > 0 and suppose that k > −n. Then, as α→ 0,

I(α) =

∫ ϵ

0

rk+n−1u2αdr

is bounded above and below by positive multiples of αk+2 if n > k + 4, αk+2 log(1/α) if n = k + 4, and

αn−2 if n < k + 4.

Proof. The change of variable t = r/α yields

I(α) = αk+2

∫ ϵ/α

0

tk+n−1

(1 + t2)n−2
dt.

Now, note that for t ≥ 1, t2 ≤ t2 + 1 ≤ 2t2, and so we can find bounds for I(α):

αk+2

(
C +

∫ ϵ/α

1

2−n+2tk−n+3dt

)
≤ I(α) ≤ αk+2

(
C +

∫ ϵ/α

1

tk−n+3dt

)
.

So, if n > k+4,
∫ ϵ/α

1

tk−n+3dt is bounded, if n = k+4,
∫ ϵ/α

1

tk−n+3dt = log(ϵ)− log(α), and if n < k+4,

αk+2

∫ ϵ/α

1

tk−n+3dt is comparable to αn−2.

13



2.2 Characterization of the Solutions in the Sphere

An interesting feature of the Yamabe Problem in the standard sphere is that we have a complete

solution for the problem in the sense that we are able to describe all the solutions.

Recall that a diffeomorphism between two Riemannian manifolds (M, g) and (N,h), Ψ : M → N , is

said to be a conformal diffeomorphism if the pullback of the metric h by Ψ is conformal to g.

The following is due to Obata [14]:

Proposition 2.2.1. If g is a metric on Sn that is conformal to the standard metric g and has constant

sectional curvature, then up to multiplication by a constant factor, g is obtained from g by a conformal

diffeomorphism of the sphere.

Proof. Our aim is to show that Sn equipped with g has constant scalar curvature and then apply the

Killing-Hopf theorem to prove the result. So we start by showing that g is Einstein. Considering the

metric g as the background metric on the sphere, we can write g = φ−2g, where φ ∈ C∞(M) is strictly

positive and smooth. By recalling the local forms of the Laplace-Beltrami operator and Hessian of a

function we have, by making the substitution e2f = φ−2 ⇐⇒ f = − logφ,

(Hf )ij =

(
∂2f

∂xi∂xj
−
∑
k

Γkij
∂f

∂xk

)
dxi ⊗ dxj =

(
−

∂2φ
∂xi∂xj

φ
+

∂φ
∂xi

∂φ
∂xj

φ2
+
∑
k

Γkij
1

φ

∂φ

∂xk

)
dxi ⊗ dxj

= − 1

φ
(Hφ)ij +

1

φ2
(dφ⊗ dφ)ij ,

(2.2.1)

and therefore

∆g(− logφ) = − 1

φ
∆gφ− 1

φ2
∥dφ∥2.

The transformation laws (A.0.18), (A.0.19) imply

Ric = Ric−(n− 2)Hf + (n− 2)df ⊗ df + (∆gf − (n− 2)∥df∥2)g

= Ric+
n− 2

φ
Hφ − n− 2

φ2
dφ⊗ dφ+

n− 2

φ2
dφ⊗ dφ−

(
1

φ
∆gφ+

1

φ2
∥df∥2 + n− 2

φ2
∥dφ∥2

)
g

= Ric+
n− 2

φ
Hφ −

(
1

φ
∆gφ+

n− 1

φ2
∥dφ∥2

)
g,

and therefore

S = Rijg
ij

= φ2Rijg
ij + (n− 2)φ(Hφ)ijg

ij − nφ∆gφ+ (n− 1)n∥dφ∥2

= φ2S − 2(n− 1)φ∆gφ− n(n− 1)∥dφ∥2,

where all operations are taken with respect to the metric g.
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If
◦

Ric = Ric−S
ng denotes the traceless Ricci tensor, then, because g is Einstein:

0 =
◦
Rij = Rij −

S

n
gij

= Rij +
n− 2

φ
(Hφ)ij −

(
1

φ
∆gφ+

n− 1

φ2
∥dφ∥2

)
gij − φ−2

(
1

n
φ2S − 2(n− 1)

n
φ∆gφ− (n− 1)∥dφ∥2

)
gij

=
◦
Rij +

n− 2

φ
(Hφ)ij +

n− 2

nφ
∆gφgij

Since S is constant, the contracted Bianchi’s identity (A.0.13) implies that the divergence of the Ricci

tensor vanishes identically. And since the divergence of the metric also vanishes identically, the diver-

gence of the traceless Ricci tensor also vanishes identically. Since
◦

Ric is traceless, integration by parts

yields

∫
Sn
φ|

◦
Ric|2dVg =

∫
Sn
φ

◦
Rij

◦
R
ij

dVg = −(n− 2)

∫
Sn

◦
R
ij (

(Hφ)ij +
1

n
∆gφgij

)
dVg

= −(n− 2)

∫
Sn

(
◦
R
ij

(Hφ)ij +
1

n

◦
R
ij

∆gφgij

)
dVg.

The second term is zero because
◦
R
ij

∆gφgij = trg(
◦

Ric)∆gφ, and so we are left with

∫
Sn
φ|

◦
Ric |2dVg = −(n−2)

∫
Sn

◦
R
ij

(Hφ)ijdVg = −(n−2)

∫
Sn
⟨
◦
R,Hφ⟩dVg = (n−2)

∫
Sn
⟨div

◦
Ric, dφ⟩dVg = 0.

This shows that
◦

Ric must vanish identically, and so g is Einstein. Since g is conformal to the round metric

g, which is locally conformally flat, the Weyl tensor is identically zero. And so, by Schur’s Lemma, g has

constant curvature, and so (Sn, g) is isometric to the standard sphere by the Killing-Hopf Theorem. The

isometry is the desired conformal diffeomorphism.

Combining Proposition 2.2.1 with Theorem 3.1.7 we obtain a complete solution to the Yamabe prob-

lem on the sphere:

Theorem 2.2.2. The Yamabe functional on (Sn, g) is minimized by constant multiples of the standard

metric and its images under conformal diffeomorphisms. These are the only metrics conformal to the

standard one on Sn that have constant scalar curvature.
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Chapter 3

Variational Methods

In the previous chapter, we introduced the Yamabe invariant of a compact Riemannian manifold

and checked that, if it is reached by a smooth positive function, then the Yamabe problem is solved.

We also saw that the Yamabe invariant of any compact n−dimensional Riemannian manifold satisfies

λ(M) ≤ λ(Sn). However, we did not explore the importance of this inequality.

Since the Yamabe problem is related to a minimization problem, a natural idea to solve the Yamabe

problem could be to apply the direct method of the Calculus of Variations, that is, to construct a mini-

mizing sequence for λ(M), and hope to extract a convergent subsequence, followed by some regularity

theory and the Strong Maximum Principle B.0.13 to show that the limit function is both smooth and

positive.

However, because the exponent appearing in the definition of Qg is precisely the critical exponent

for the Sobolev inequality, this method, in general, does not work since the injection H1(M) ↪→ L2∗(M)

is not compact. Yamabe knew this, and to overcome this obstacle he decided to perturb Qg and the

Yamabe equation (1.0.1) by considering a subcritical problem. By doing this, he obtained a sequence

of problems that are easily solved using the direct method of the Calculus of Variations followed by

regularity theory and the Strong Maximum Principle B.0.13. Then, he obtained a sequence of positive

smooth functions that, under a certain uniform boundedness condition in some Lr(M) space with r >

2∗, converges uniformly, up to a subsequence, to a positive, smooth solution of the Yamabe problem.

Yamabe’s mistake was to assume that this uniform boundedness condition is always satisfied, which, as

noted by Trudinger in [18], is not always the case. It turns out that, as long as λ(M) < λ(Sn), the Lr

uniform boundedness condition is satisfied. This detail led to a significant increase in the complexity of

the problem. In later chapters, we will prove that, if (M, g) is not in the conformal class of the standard

sphere, we have λ(M) < λ(Sn), and so it is only natural to conclude that the problem in the sphere

requires a different approach.

The purpose of this chapter is to explore further the Yamabe invariant of a manifold, and its impor-

tance in the overall solution of the problem. To show that λ(M) < λ(Sn) is a sufficient condition for the

Yamabe problem to have a solution. To show that there is a minimizer of the Yamabe functional in the

standard sphere, where the sufficient condition mentioned above is clearly not satisfied (note that the
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standard sphere already has constant scalar curvature). Here, we closely follow section 4 of [13], adding

however all the details, and prove a result regarding the invertibility of the conformal Laplacian as an op-

erator from the Sobolev space W 2,q(M) onto Lq(M), for q > 1 on certain Riemannian manifolds (M, g).

This result will be useful in the proof of the fact that the Yamabe invariant in the sphere is achieved.

3.1 The subcritical equation

As we have seen, the Yamabe problem is related to a minimization problem. As such, the most direct

approach to try and solve the Yamabe Problem would be to apply the direct method of the Calculus

of Variations, and afterwards, try to develop some regularity theory. This, however, is a failing strategy

as the injection H1(M) ↪→ L2∗(M) lacks compactness. Indeed, if we take a minimizing sequence,

{uk} ⊂ H1(M), of Qg, such that ∥uk∥L2∗ = 1 (which we can always assume to be true by homogeneity),

then

∥uk∥H1 =

∫
M

|∇uk|2 + u2kdVg =
1

a
Qg(uk) +

∫
M

(
1− S

a

)
u2kdVg

≤ 1

a
Qg(uk) + C∥uk∥22∗ =

1

a
Qg(uk) + C,

(3.1.1)

where we have applied Hölder’s inequality to arrive at the last inequality. Because Qg(uk) → λ(M), we

can conclude that {uk} is bounded in H1(M), so {uk} converges weakly along a subsequence to some

u ∈ H1(M). But since 2∗ is precisely the exponent for which the inclusion map fails to be compact, we

cannot guarantee that the constraint ∥uk∥2∗ = 1 is preserved in the limit, all we know is ∥u∥2∗ ≤ 1 by

Fatou’s Lemma. In particular, u may be identically zero.

However, if λ(M) < λ(Sn) then, as we are going to see below, the normalized L2∗−norm condition is

satisfied in the limit.

A classical method to go around this obstacle is to perturb the problem in a way that we get a problem

that we can solve. In our situation, the best way to do this is to perturb the exponent on the right-hand

side of the Yamabe equation. In this text, we chose the latter option as the scalar curvature has a

deep geometric meaning that is very important in the context of the Yamabe problem, and consider the

perturbed/subcritical equation

Lgφ = λs(M)φs−1, (3.1.2)

with 2 ≤ s ≤ 2∗, which comes with the associated family of functionals Qs
g:

Qs
g(φ) =

E(φ)

∥φ∥2s
=

∫
M

a|∇φ|2 + Sφ2dVg

∥φ∥2s
, (3.1.3)

and the associated minimization problems λs(M) = infφ∈H1(M)\{0} Qs
g(φ).

It is a result due to Yamabe [19] that, for s < 2∗, this equation always has a smooth, strictly positive,

solution φs that minimizes λs(M). Indeed, when s < 2∗, the compactness of the injection H1(M) ↪→

Ls(M) makes this result, modulo the regularity and positivity properties, very believable. This is because
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the direct method of the Calculus of Variations now produces a minimizer that satisfies ∥φs∥s = 1, as

opposed to what happens in the critical case, where s = 2∗.

Proposition 3.1.1. For each 2 ≤ s < 2∗, there exists a smooth, positive solution φs to the subcritical

equation (3.1.2), for which Qs(φs) = λs(M) and ∥φs∥s = 1.

Proof. Since 2 ≤ s < 2∗, the inclusion H1(M) ↪→ Ls(M) is compact. The direct method of the Calculus

of Variations works and through this method, we are able to extract a solution. To see this, take {uk} ⊂

H1(M) to be a minimizing sequence for λs(M) (Qs
g(uk) → λs(M)) such that ∥uk∥s = 1 (the homogeneity

of the functional Qs
g allows us to make this assumption). By replacing, if necessary, uk by its absolute

value, we may assume without loss of generality that the sequence is nonnegative.Then, proceeding as

in (3.1.1), we conclude that {uk} is a bounded sequence in H1(M):

∥uk∥H1 =

∫
M

|∇uk|2 + u2kdVg =
1

a
Qs
g(uk) +

∫
M

(
1− S

a

)
u2kdVg

≤ 1

a
Qs
g(uk) + C∥uk∥2s.

(3.1.4)

Since the embedding H1(M) ↪→ Ls(M) is compact, up to a subsequence, {uk} converges weakly in

H1(M) and strongly in Ls(M) to some us ∈ H1(M) with ∥us∥s = 1. So, Qs
g(us) ≥ λs(M). Because

H1(M) ↪→ L2(M) is also compact and S ∈ L∞(M), we have that
∫
M

Su2kdVg →
∫
M

Su2sdVg. The weak

convergence in H1(M) gives

∫
M

|∇us|2dVg ≤ lim inf
k→∞

∫
M

|∇uk|2dVg

and thus

Qs
g(us) ≤ lim sup

k→∞

∫
M

a|∇uk|2dVg +
∫
M

Su2kdVg = λs(M)

but then Qs
g(us) = λs(M). Hence, us is a weak solution of the subcritical equation (3.1.2) and so the

regularity result B.0.20, implies that us is positive and smooth.

3.1.1 A sufficient condition for the Yamabe Problem

We now present a sufficient condition for the existence of a solution to the Yamabe Problem. The

problem with it is that it does not include the model case of the sphere, therefore, we will have to prove

the existence of a minimizer for the Yamabe functional on the standard sphere by hand. It turns out,

as we will see in the coming chapters that the referred condition is satisfied by all compact, connected

Riemannian manifolds apart from when we are dealing with the conformal class of the standard sphere..

As mentioned at the beginning of this chapter, the idea is to consider the subcritical problems (3.1.2)

for s < 2∗ and pass to the limit s → 2∗. Because of this, we have to study the behaviour of λs(M) as a

function of s. To simplify our task, we choose a background metric such that M has volume one. Note

that we can always choose such a metric by multiplying the original metric with an appropriate constant.

Under this assumption, Hölder’s inequality implies that ∥u∥s ≤ ∥u∥s′ whenever s ≤ s′. This, in

particular, makes the study of the constants λs(M) much simpler. The next lemma, due to Aubin (see [3])
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encapsulates the results we need about the behaviour of λs(M) as a function of s:

Lemma 3.1.2. If
∫
M
dVg = 1, then |λs(M)| is nonincreasing as a function of s ∈ [2, 2∗]. Moreover, if

λ(M) ≥ 0, then λs(M) is continuous from the left.

Proof. For any u ∈ H1(M) \ {0} we have by definition that

Qs′

g (u) =
∥u∥s
∥u∥s′

Qs
g. (3.1.5)

So, given s, s′ ∈ [2, 2∗] we see that λs and λs′ have the same sign. Let s, s′ ∈ [2, 2∗] with s ≤ s′. First,

consider the case where λs(M) > 0. Then, the observation ∥u∥s ≤ ∥u∥s′ implies that λs(M) ≥ λs′(M).

Now consider the case where λs < 0. In this setting, consider u ∈ H1(M)\{0} such that Qs
g(u),Qs′

g (u) <

0. In this case, we see that

Qs′

g (u) =
∥u∥s
∥u∥s′

Qs
g(u) ≥ Qs

g(u),

and so λs(M) ≤ λs′(M). This finishes the proof that |λs(M)| is nonincreasing.

Now assume that λ(M) ≥ 0, this implies, via (3.1.5), that λs(M) ≥ 0 for every s ∈ [2, 2∗]. Now fix

s ∈ [2, 2∗] and let ε > 0. By the properties of infimum there is u ∈ H1(M) such that Qs
g(u) < λs(M) + ε.

Because ∥u∥s is a continuous function of s, λs(M) ≤ λs′(M) ≤ Qs′

g (u) < λs + 2ε ⇐⇒ |λs − λs′ | ≤ 2ε,

for s′ ≤ s sufficiently close to s.

Using the properties about λs(M) we have just shown, we are able to acquire a Lr(M)-uniform

bound on the sequence {us} provided that λ(M) < λ(Sn). The following proposition, which is due to the

combined efforts of Trudinger (see [18]) and Aubin (see [3]), formalises this.

Proposition 3.1.3. Let {us} be the collection of functions given by Proposition 3.1.1. If λ(M) < λ(Sn),

then there are constants s0 < 2∗, r > 2∗, and C > 0 such that ∥us∥r ≤ C for all s ≥ s0.

Proof. Let δ > 0 (to be determined later). Multiply (3.1.2) by u1+2δ
s and integrate by parts to get

∫
M

a⟨∇us, (1 + 2δ)u2δs ∇us⟩+ Su2+2δ
s dVg = λs

∫
M

uss
s+2δdVg.

Setting ws = u1+δs , we have ∇ws = (1 + δ)uδs∇us. So rewriting the previous equation with respect to ws

we have
1 + 2δ

(1 + δ)2

∫
M

a|∇w|2dVg =
∫
M

λs(M)w2us−2
s − Sw2dVg.

The (sharp) Sobolev inequality (Theorem 2.1.3 and Proposition B.0.8) and the previous equation yield

for any ε > 0:

∥ws∥22∗ ≤ (1 + ε)
a

λ(Sn)

∫
M

|∇ws|2dVg + Cε

∫
M

w2
sdVg

= (1 + ε)
λs(M)

λ(Sn)
(1 + δ)2

1 + 2δ

∫
M

w2
su
s−2
s dVg +

∫
M

(
Cε −

(1 + δ)2

1 + 2δ
S

)
w2
sdVg

≤ (1 + ε)
λs(M)

λ(Sn)
(1 + δ)2

1 + 2δ

∫
M

w2
su
s−2
s dVg + C ′

ε∥ws∥22

≤ (1 + ε)
(1 + δ)2

1 + 2δ

λs(M)

λ(Sn)
∥ws∥22∗∥us∥s−2

(s−2)n/2 + C ′
ε∥ws∥22,

(3.1.6)

20



by Hölder’s inequality.

If λ(M) < 0, we have λs(M) < 0 for every s ∈ [2, 2∗], and as such we arrive at

∥ws∥22∗ ≤ C∥ws∥22 = C∥us∥1+δ2(1+δ) ≤ C∥us∥1+δs ≤ C.

Recall, that ∥us∥s = 1. And since ∥us∥1+δ2∗(1+δ) = ∥ws∥2∗ ≤ C, we conclude that {us} is bounded uniformly

in L2∗(1+δ)(M). In the case where 0 ≤ λ(M) < λ(Sn), concluding the result is not as straightforward.

First, the fact that s < 2∗, implies (s−2)n
2 < s, so Hölder’s inequality implies ∥us∥(s−2)n/2 ≤ ∥us∥s = 1

(here we are again using the fact that M has volume one). Since 0 ≤ λ(M) < λ(Sn), the previous lemma

implies that λs(M) is (as a function of s) continuous from the left. By recalling that λ(M) = λ2∗(M), we

can conclude that there is s0 < 2∗, such that λs(M)/λ(Sn) ≤ λs0(M)/λ(Sn) < 1 for s ≥ s0. Noting that

(1 + ε)
(1 + δ)2

1 + 2δ
= (1 + ε)

1 + 2δ + δ2

1 + 2δ
= 1 + ε+

δ2 + εδ2

1 + 2δ
,

we can choose first ε small, and then δ small enough so that the coefficient (1 + ε) (1+δ)
2

1+2δ
λs(M)
λ(Sn) < 1, and

so, using this in (3.1.6) we can conclude that

∥ws∥22∗ ≤ C∥ws∥22,

for some constant C > 0. Now proceed as in the case λ(M) < 0 to conclude the result.

Remark 3.1.4. It is a curious fact that when λ(M) < 0, which is the case, for example, whenever the

scalar curvature satisfies
∫
M
SdVg < 0, the proof above implies that {us} is uniformly bounded in every

Lr(M) (1 ≤ r <∞).

Remark 3.1.5. In the Introduction, we mentioned that Yamabe’s attempt at solving the Yamabe Problem

contained a mistake. This mistake was to assume that the sequence {us} given by Proposition 3.1.1

is uniformly bounded in some Lr(M) for some r > 2∗ (as in the previous proposition) whether or not

λ(M) < λ(Sn). Actually, it is likely that Yamabe was not aware of the inequality λ(M) ≤ λ(Sn) as this

first appeared in the literature in [3] which was published in 1968, 8 years after Yamabe died.

Using the previous proposition, we are able to prove that the Yamabe problem has a solution if

λ(M) < λ(Sn).

Theorem 3.1.6. Let {us} be the collection of functions given by Proposition 3.1.1. Suppose that λ(M) <

λ(Sn). Then, as s → 2∗, {us} converges, up to a subsequence, in the C2−norm to a positive function

u ∈ C∞(M) that satisfies:

Qg(u) = λ(M), Lgu = λ(M)u2
∗−1.

In particular, the metric g̃ = u2
∗−2g has constant scalar curvature λ(M).

Proof. According to the previous proposition, there is s0 ∈ [2, 2∗] and r > 2∗ such that {us}s≥s0 is

uniformly bounded in Lr(M). Therefore, the regularity theorem B.0.20 implies that {us}s≥s0 is uniformly

bounded in C2,α(M) for some α ∈ (0, 1). But then the Arzelà–Ascoli theorem (note that we can apply
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this theorem because {us} is bounded in C2,α(M)) implies that there is a subsequence of {us} along

which we have uniform convergence with respect to the C2−norm to a function u ∈ C2(M). So, we have

that ∥u∥2∗ = lims→2∗ ∥us∥s = 1. The limit function u must then satisfy

Lu = λup−1, Qg(u) = λ,

where λ = lims→2∗ λs(M).

If λ(M) ≥ 0, Lemma 3.1.2 implies that λ = λ(M), since λs(M) is continuous from the left as function

of s. On the other hand, if λ(M) < 0 Lemma 3.1.2 shows that λs(M) is an increasing function of s and so

we must have λ ≤ λ(M). Because ∥u∥2∗ ≥ 1, Theorem B.0.20 shows that u is C∞ and strictly positive.

But then, the definition of λ(M) implies that λ = λ(M).

3.1.2 Minimization on the Sphere

From Chapter 2 we know that the standard metric on the sphere, g, has constant scalar curvature.

However, we did not show that this metric is a minimizer for the Yamabe functional. In this section, we

prove this fact. Furthermore, the standard sphere clearly does not satisfy the condition λ(Sn) < λ(Sn),

as such the above procedure fails to produce a smooth positive minimizer for the Yamabe functional.

It is the existence of the family of conformal diffeomorphisms described in Chapter 2, that enables

us, with a little more effort, to prove the existence of minimizers for the Yamabe functional on the sphere.

The following is taken from [13] where we have added all the missing details.

Theorem 3.1.7. There is a positive, smooth function ψ on Sn that satisfies Qg(ψ) = λ(Sn).

Proof. First, recall that the standard sphere, Sn, has constant scalar curvature, S = n(n − 1). For

each 2 ≤ s < 2∗, let us be the solution of the subcritical equation whose existence is guaranteed by

Proposition 3.1.1. Assume that the supremum of every us is achieved at the south pole (which is always

true after composing with a suitable rotation).

If {us} is uniformly bounded in L∞(Sn) then the method used in Theorem 3.1.6 gives the result. So

from now on, we assume that ∥us∥L∞(Sn) → ∞. Note that we cannot guarantee a uniform Lr−bound

(r > 2∗) of the sequence {us} because the proof of 3.1.3 breaks down in the standard sphere. Now let

kα = σ−1 ◦ δα ◦ σ : Sn → Sn be the conformal diffeomorphism induced by the dilation δα on Rn, and

set gα = k∗αg. Using Lemma 2.1.1 we compute gα in the local coordinates induced by the stereographic

projection:

ρ∗k∗αg = δ∗αρ
∗g = δ∗α

(
4

(1 + |x|2)2
ds2
)

= 4
α4

(α2 + |x|2)2
1

α2
ds2 = 4

α2

(α2 + |x|2)2
ds2.

Now let ϕα(ζ, ξ) =
(

1+ξ+α2(1−ξ)
2α

)(2−n)/2
, where (ζ, ξ) ∈ Sn are as in Lemma 2.1.1, i.e. ζ ∈ Rn and

22



ξ ∈ R. Direct computation shows:

ρ∗(ϕp−2
α g) = ρ∗

[(
2α

1 + ξ + α2(1− ξ)

)2
]

4

(1 + |x|2)2
ds2

=

 4α

1 + |x|2−1
|x|2+1 + α2 − α2 |x|2−1

|x|2+1

2

1

(1 + |x|2)2
ds2

=

(
4α(|x|2 + 1)

2α2 + 2|x|2

)2
1

(1 + |x|2)2
ds2

=
4α2

(α2 + |x|2)2
ds2,

that is, gα = ϕ2
∗−2
α g. Observe that, at the south pole, ϕα = α(2−n)/2.

For each s < 2∗, let ψs = ϕαk
∗
αus, where α = α(s) is chosen so that ψs = 1 at the south pole. This

implies that αs = ∥us∥2/(n−2)
L∞(Sn) → ∞ as s→ 2∗, and therefore ψs ≤ α(n−2)/2ϕα.

Let Lα denote the conformal Laplacian with respect to the metric gα, then we have

Lα(k∗αus) = λs(Sn)(k∗αus)s−1 = k∗α(λs(Sn)us−1
s ) = k∗α(Lgus).

The transformation law A.0.20 for the conformal Laplacian implies

Lgψs = L(ϕαk∗αus) = ϕ2
∗−1
α Lα(k∗αus) = λs(Sn)ϕ2

∗−1
α (k∗αus)

s−1 = λs(Sn)ϕ2
∗−s
α ψs−1

s . (3.1.7)

Using this we find that {ψs} is bounded in H1(Sn):

∥ψs∥H1 ≤ C

∫
Sn
ψsLgψsdVg = C

∫
Sn
ψsϕ

p−1
α Lα(k∗αus)dVg = C

∫
Sn
k∗αusk

∗
αLguαϕ2

∗

α dVg

= C

∫
Sn
uαLguαdVg ≤ C ′∥us∥H1 ,

so the boundedness of {us} in H1(Sn) implies the boundedness of {ψs} in H1(Sn). Since {us} is

bounded in H1(Sn) it also is bounded in L2∗(Sn) by the Sobolev Embedding Theorem (B.0.7). Let

ψ ∈ H1(Sn) denote the weak limit of {ψs}. If p denotes the north pole, on any compact subset of

Sn \ {p} there exists a constant A such that ϕα ≤ Aα(2−n)/2, and thus on compact sets away from p, the

right-hand side of (3.1.7) is bounded by λ2(Sn)A2∗−1 , independently of s:

λs(Sn)ϕ2
∗−1
α (k∗αus)

s−1 ≤ λs(Sn)A2∗−1α−n+2
2 ∥k∗αus∥2

∗−1
L∞(Sn)

= λs(Sn)A2∗−1α−n+2
2 ∥us∥2

∗−1
L∞(Sn)

≤ λ2(Sn)A2∗−1α−n+2
2 ∥us∥2

∗−1
L∞(Sn)

= λ2(Sn)A2∗−1∥uα∥
− n+2

n−2

L∞(Sn)∥us∥
n+2
n−2

L∞(Sn)

= λ2(Sn)A2∗−1,

where we have used the fact that λs(Sn) is a nonincreasing function of s since λ(Sn) > 0 (see Lemma

3.1.2). This implies that on any compact set away from p, the right-hand side of (3.1.7) is bounded
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in Lr for every r. Then arguing as in the proof of Theorem B.0.20 but using Local Elliptic Regularity

(Theorem B.0.11) we conclude that {ψs} is bounded in C2,α on compact sets that do not contain p.

Now let K1 ⊂ K2 ⊂ · · · be a sequence of compact sets whose union is Sn \ {p}. By the Arzelà-Ascoli

theorem, using the same method as in the proof of Theorem 3.1.6, we can extract a subsequence of

{ψs} that converges in C2,α(K1), and then from this subsequence extract a subsequence that converges

in C2,α(K2), etc. And by taking a diagonal subsequence, we see that the limit function ψ is C2 on Sn\{p}.

Since (by Lemma 3.1.2) λs(Sn) → λ(Sn) as s→ 2∗ and ϕ2
∗−s
α ≤ 1 away from the north pole for s near 2∗,

we conclude that ψ satisfies Lgψ = fψ2∗−1 weakly on Sn\{p}, for some bounded function 0 ≤ f ≤ λ(Sn).

By the Weak Removable Singularities Theorem (Theorem B.0.14), the same equation holds weakly on

Sn.

For each s,

∥ψs∥2
∗

2∗ =

∫
Sn
ϕ2

∗

α (k∗αus)
2∗dVg =

∫
Sn
(k∗αus)

2∗k∗αdVg = ∥us∥2
∗

2∗ ≥ ω1−2∗/s
n ∥us∥2

∗

s ,

where we have applied Hölder’s inequality to obtain the last inequality. This implies that ∥ψ∥2∗ ≥ 1, and

therefore Qg(ψ) ≤ λ(Sn). But with λ(Sn) being the infimum of Qg, we must have Qg(ψ) = λ(Sn) and

Lψ = λ(Sn)ψ2∗−1.

To finish the proof we still have to show that ψ is positive and smooth. Due to the Regularity Theorem

B.0.20, it is sufficient to show that ψ ∈ Lr(Sn) for some r > 2∗. The operator Lg : W 2,q(Sn) → Lq(Sn)

has a bounded inverse for q > 1 as is shown below in Lemma 3.1.8 (just set M to be the standard

sphere, Sn). Now let η ∈ C∞(Sn) be a smooth function supported in a small neighbourhood of p, and

consider the perturbed operator

Lη := Lg − ηλ(Sn)ψ2∗−2.

Because the space of invertible operators is open, if the operator norm of the perturbation term λ(Sn)ηψ2∗−2

is small enough, the operator Lη will also have a bounded inverse. Now chose q such that 2n
n+2 < q < n

2

(in particular, q > 1) and set r = nq
n−2q , for u ∈ W 2,q(Sn), Hölder’s inequality followed by Sobolev’s

inequality give us

∥ηψ2∗−2u∥q ≤ ∥η1/(2
∗−2)∥2

∗−2
2∗ ∥u∥r ≤ C∥η1/(n−2)ψ∥2

∗−2
2∗ ∥u∥W 2,q ,

therefore,

∥ηψ2∗−2∥op ≤ C∥η1/(n−2)ψ∥2
∗−2

2∗ ,

where ∥ · ∥op denotes the operator norm. Thus, by shrinking the support of η and imposing 0 ≤ η ≤ 1,

we can make the operator norm of the term λ(Sn)ηψ2∗−2 as small as we want.

Now Lηψ = λ(Sn)ψ2∗−1 − λ(Sn)ηψ2∗−1 = (1 − η)λ(Sn)ψ2∗−1 ∈ Lq(Sn) because ψ is C2 away from the

north pole.

Since Lη :W 2,q(Sn) → Lq(Sn) is invertible, there exists v ∈W 2,q(Sn) such that Lηψ = Lηv, but Hölder’s

24



inequality and the Sobolev inequality yield

∥u∥H1 ≤
∫
Sn
uLudVg =

∫
Sn
uLηudVg +

∫
Sn
ληψ2∗−1udVg

≤
∫
Sn
uLηudVg +

(∫
Sn
η2

∗/(2∗−1)ψ2∗dVg

) 2∗−1
2∗

∥u∥2∗

≤
∫
Sn
uLηudVg + C

(∫
Sn
η2

∗/(2∗−1)ψpdVg

) 2∗−1
2∗

∥u∥H1

≤
∫
Sn
uLηudVg + Cε∥u∥H1 ,

where ε > 0 depends on η and ψ and can be as small as we want it. Hence Lη is injective on H1(Sn)

and since W 2,q(Sn) ⊂ H1(Sn) (this is due to a simple application of Hölder’s inequality using the fact

that Sn has finite volume) we must have ψ = v ∈ W 2,q(Sn) ⇀ Lr(Sn). Since r > 2∗, Theorem B.0.20

implies that ψ must be smooth and since ψ is one at the south pole, ψ must be strictly positive.

Lemma 3.1.8. Let (M, g) be a compact Riemannian manifold with strictly positive scalar curvature S.

Then, for every 1 < q <∞, the operator Lg :W 2,q(M) → Lq(M) is invertible.

Proof. We start by showing that Lg is injective. Indeed if there is u ∈ W 2,q(Sn) \ {0} such that Lgu =

0, then, by elliptic regularity, u is a smooth function, and is an eigenfunction of the Laplace-Beltrami

operator and −S is its eigenvalue. But then (since u ∈ C∞(M) ⊂ H1(M)) we have

∫
M

a|∇u|2dVg = −
∫
Sn
Su2dVg, (3.1.8)

where we have used the fact that the scalar curvature of M is strictly positive. This implies that u ≡ 0

which contradicts the assumption that u is not identically zero. And so we have shown that Lg is a

injective operator from W 2,q(M) to Lq(M). Now we show that Lg is surjective. This is equivalent to

showing that for every f ∈ Lq(M) there is u ∈ W 2,q(M) such that Lgu = f at almost every point. Fix

f ∈ Lq(M). Let {Ui} be a finite open covering of M such that each Ui is the domain of a chart whose

image is a bounded smooth domain in Rn and let {ηi} be a smooth partition of unity subordinate to the

open covering {Ui}. Now let fi = ηif . Denote by Vi the (bounded) open set in Rn that corresponds to

the open set Ui in M . For each i consider the problem


− 1√

det(gij)
∂i(g

ij
√

det(gij)∂ju) + Su = fi, in Vi,

u = 0 in ∂Vi.
(3.1.9)

The equation above is the equation Lgu = fi written in local coordinates. Now, by noting that we are in

the conditions of Theorem B.0.16, we have a unique solution ui ∈W 2,p(Vi) to the problem (3.1.9). Now

transport the function ui to Ui via the chart and define ui on the rest of Sn by extending it by zero. Now

define u =
∑
i ui, which by construction is in the Sobolev space W 2,q(M). We claim that u is such that

Lgu = f at almost every point. To see this fix φ ∈ C∞
c (M), and, for each i, let {φin} ⊂ C∞

c (Ui) ⊂W 2,q(Ui)
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be a sequence of compactly supported smooth functions such that

∥φin − φ|Ui
∥W 2,q(Ui) → 0, as n→ ∞.

So we have, ∫
M

uL∗
gφdVg =

∫
M

φLgudVg =
∑
i

∫
Ui

φLguidVg

=
∑
i

lim
n→∞

∫
Ui

φinLguidVg =
∑
i

lim
n→∞

∫
Ui

φinfidVg

=
∑
i

∫
Ui

fiφdVg =

∫
M

φfdVg,

Where L∗
g(= Lg) is the adjoint operator of Lg. This shows that u is indeed a weak solution of Lgu = f .

By noting that

∥Lgu∥q ≤ a∥∆u∥q + ∥S∥L∞(M)∥u∥q ≲ ∥u∥W 2,q ,

we conclude that Lg : W 2,q(M) → Lq(M) is a bounded and bijective operator, hence invertible with

bounded inverse.
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Chapter 4

Conformal Normal Coordinates and

Stereographic Projections

In Chapter 3 we saw that if λ(M) < λ(Sn) then we are able to apply the direct method of the Calculus

of Variations followed by some regularity theory to solve the Yamabe problem. Our objective, from now

on will be to show that whenever M is not in the conformal class of the standard sphere this is indeed

the case. However, this task is far from trivial. This was, originally, the result of the combined efforts of

Aubin and Schoen ( [2,16]). More specifically, Aubin proved this fact when M is not conformally flat (i.e.

the metric is locally conformal to the Euclidean metric) and has dimension greater or equal to 6. And

Schoen covered the remaining cases, those being when either M is conformally flat or has dimension

3,4 or 5. Later on, John M. Lee and Thomas H. Parker also proved this fact using different methods

in [13]. They managed, using the machinery presented in this chapter and Chapter 6, to merge the

proofs of Schoen and Aubin. The common trait between the works of Aubin, Schoen, and therefore,

Lee and Parker is the construction of a test function. In this chapter, we follow closely Lee and Parker’s

approach from sections 5 and 6 in [13] to build the necessary machinery to prove λ(M) < λ(Sn). The

purpose of this chapter is to develop the necessary tools for this construction.

4.1 Conformal Normal Coordinates

The calculations one usually encounters in Riemannian Geometry are dense and complicated. So,

it would be very useful if we had access to coordinates that greatly simplify the analysis of the local

geometry of a Riemannian manifold. Said coordinates do exist, they are called normal coordinates. In

this section, we describe the geometric construction of normal coordinates and proceed to describe a

similar set of coordinate charts on a conformal manifold to M . These will be normal coordinates for

some metric g within the conformal class of the original metric, and the freedom in the choice of metric

will allow us to simplify the local geometry considerably more than the usual normal coordinates.
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4.1.1 Normal Coordinates

In this subsection, we present the construction of normal coordinates. The results and proofs in this

subsection were based on the excellent [11] with some details added for better comprehension.

To properly construct normal coordinates we start by introducing the notions of covariant derivative

of a vector field along a curve and of a geodesic.

Definition 4.1.1. Let (M, g) be a Riemannian manifold. A vector field defined along a differentiable

curve c : I → M is a differentiable map V : I → TM such that V (t) ∈ Tc(t)M,∀t ∈ I. If ċ ̸= 0, the

covariant derivative of V along c is the vector field defined along c by

∇ċ(t)V = (∇XY )c(t) ,

for any vector fields X,Y ∈ X(M) such that X(c(t)) = ċ(t) and Y (c(s)) = V (s) with s ∈ (t− ε, t+ ε) for

some ε > 0.

Since the covariant derivative of a vector field Y along a vector field X at p ∈M only depends on Xp

and the values of Y along a curve tangent to X, the covariant derivative along a curve is well-defined.

In local coordinates {xi} we have that

∇ċ(t)V =

n∑
i=1

V̇ i(t) + n∑
j,k=1

Γijk(c(t))V
j(t)ẋk(t)

( ∂

∂xi

)
c(t)

,

where xi(t) = xi(c(t)) and Γijk denote the Christofel symbols as in (A.0.2). There is another way to

obtain the covariant derivative of a vector field along a curve which uses the concept of vector bundles,

but we will not use it in order to not overcomplicate matters.

Definition 4.1.2. A curve c : I →M is said to be a geodesic (of the Levi-Civita connection ∇) if

∇ċċ = 0.

In local coordinates, this equation becomes

ẍi(t) +

n∑
j,k=1

Γijk(c(t))ẋ
j(t)ẋk(t) = 0,∀i = 1, ..., n.

Definition 4.1.3. Let (M, g) be a Riemannian manifold, take p ∈ M and v ∈ TpM . Denote by cv the

unique geodesic starting at p with ċv(0) = v. Let Vp := {v ∈ TpM : cv is defined in for all t ∈ [0, 1]} (note

Vp contains a neighborhood of 0 ∈ TpM ) and define the exponential map of M at p, expp : Vp → M , is

defined by exp(v) = cv(1).

Lemma 4.1.4. The exponential map of M at p is a diffeomorphism from a neighbourhood of 0 ∈ TpM

onto a neighbourhood of p ∈M .

Proof. Since TpM is a vector space, its tangent space at 0 can be identified with itself. Therefore, we
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can think of d expp at 0 as a map from TpM onto itself. So, for v ∈ TpM , we have (with this identification):

d expp(0)(v) =
d

dt
ctv(1)|t=0

=
d

dt
cv(t)|t=0

= ċv(0) = v.

This shows that d expp(0) is the identity map. So, the inverse function theorem implies that expp maps a

neighbourhood of 0 ∈ TpM diffeomorphically onto a neighbourhood of p ∈M .

Now let e1, ..., en (n = dimM ) be a basis of TpM which is orthonormal with respect to the inner

product induced on TpM by g. Writing each vector v ∈ TpM with respect to this basis yields a map

Φ : TpM → Rn, given by v = viei 7→ (v1, ..., vn). Under this identification, we conclude that expp induces

a local coordinate chart.

Definition 4.1.5. The local coordinates induced by the exponential map expp are called normal coordi-

nates with centre p.

Note that, under the coordinates induced by the exponential map at p, the geodesics that start at p

are simply the straight line going through 0 ∈ TpM . Therefore all the Christoffel symbols are zero, at p or

equivalently, all the partial derivatives of the components of the metric tensor vanish at p. The following

result summarises this.

Theorem 4.1.6. In normal coordinates, the following holds:

gij(0) = δij , Γkij(0) = 0,
∂gij
∂xk

(0) = 0,∀i, j, k.

In particular, gij = δij +O(r2) and det(gij) = 1 +O(r2), where r = |x| denotes the geodesical distance.

Some properties of normal coordinates are more easily seen in polar coordinates rather than in nor-

mal Euclidean coordinates. Introduce standard polar coordinates on Rn, (r, φ1, ..., φn−1), where

φ = (φ1, ..., φn−1) parametrizes the unit sphere. Now, via the isomorphism Φ, transport these coordi-

nates to TpM . We write grr, instead of g11 and grφi instead of g1i+1 and gφiφj instead of gi−1,j−1. Then

in the limit v → 0 ∈ TpM , we have limv→0 grr(p) = 1 and limp→0 grφj (p) = 0. Since the geodesics are

the lines φ ≡ const. when parametrized by arc length, we have, by definition of the Christoffel symbols

(A.0.2), Γirr = 0 for all i, hence

gil(2grl,r − grr,l) = 0,∀i,

thus 2grl,r − grr,l = 0, for all l, in particular, grr,r = 0, and therefore grr = 1 in a neighborhood of p. But

this implies that grφi,r = 0 and therefore, grφi ≡ 0. We have shown the following.
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Theorem 4.1.7. In polar normal coordinates, the metric has the form

(gij) =



1 0 · · · 0

0 gφ1φ1 · · · gφ1φn−1

· · · ·

· · · ·

· · · ·

0 gφn−1φ1 · · · gφn−1φn−1


in a neighbourhood of p.

4.1.2 Asymptotic Analysis using Conformal Normal Coordinates

The following theorem was one of the key results obtained by Lee and Parker in [13] that allowed

them to unify Schoen’s and Aubin’s work. Indeed, Lee and Parker exploited the freedom to change

the background metric to make the local geometry of the manifold we are working on very close to the

geometry of the Euclidean space Rn. This, as one expects, greatly diminishes the complexity of the

analysis of the Yamabe problem. We start by exploring the power of conformal normal coordinates,

these are normal coordinates with respect to a metric conformal to the original one. The usage of these

coordinates in the context of the Yamabe problem was Lee and Parker’s original idea. Indeed, in this

subsection we closely follow Section 5 of [13] with all the missing details added. The following is due to

Lee and Parker in [13].

Theorem 4.1.8 (Conformal Normal Coordinates). Let (M, g) be a Riemannian manifold and p ∈M . For

each N ≥ 2 there is a conformal metric g̃ on M such that

det(g̃ij) = 1 +O(rN ), as r → 0+,

where r = |x| in g̃−normal coordinates at p. When N ≥ 5, in g̃−normal coordinates, the scalar curvature

of g̃, S̃, satisfies S̃ = O(r2) and ∆g̃S̃ = 1
6 |W |2 at p, where W denotes the Weyl tensor (see Definition

A.0.20) that is invariant under conformal changes of metric.

Proving this theorem requires some machinery. Therefore, we will break the proof into smaller parts

that hopefully will make it simpler. At the end of this section, we will prove Theorem 4.1.8. In Theorem

4.1.20 we will use it to show that if (M, g) is a compact, connected Riemannian manifold of dimension

greater or equal to 6 that is not locally conformally flat, then λ(M) < λ(Sn).
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The proof of Theorem 4.1.8 heavily relies on the following theorem, which is due to Lee and Parker

[13].

Theorem 4.1.9. Let (M, g) be a compact, connected Riemannian manifold and take p ∈M . Given k ≥ 0

and T a symmetric (k+2)−tensor on TpM , there is a unique homogeneous polynomial f of degree k+2

in g−normal coordinates such that the metric g̃ = e2fg satisfies

Sym(∇̃kR̃ij)(p) = T,

where Sym(∇̃kR̃ij) denotes the symmetric part of the k−th covariant derivative of the Ricci tensor the

metric g̃.

Proof. Let {xi} be normal g−coordinates at p, r = |x| and let Pm denote the set of homogeneous

polynomials in {xi} of degree m. If we define Fg(x) = Rij(x)x
ixj , where x = (x1, ..., xn), then the Taylor

expansion of Fg is:

Fg(x) =

k+2∑
m=2

Fmg +O(rk+3),

where

Fmg =
1

(m− 2)!

∑
|K|=m−2

n∑
i,j=1

∂KRij(p)x
ixjxK ∈ Pm,

where n = dimM . Now observe that the components of the covariant derivatives of the Ricci tensor are

related to the usual partial derivatives of the components of the Ricci tensor by Rij,K(p) = ∂KRij(p) +

Sij,K , where the SijK are constructed as polynomials in the curvature and its derivatives of order strictly

smaller than |k| at p. If g̃ = e2fg with f ∈ Pk+3, we have, S̃ijK = SijK when |K| = k (this is because

all the extra terms given by the transformation laws of the Ricci curvature are zero at p since f and its

partial derivatives up to order k + 2 are zero at p).

Proving the result is equivalent to finding f ∈ Pk+2 such that

0 =
1

k!

∑
|K|=k

n∑
i,j=1

(
R̃ij,K(p)− TijK

)
x̃ix̃j x̃K

=
1

k!

∑
|K|=k

n∑
i,j=1

(
R̃ij,K(p)− TijK

)
xixjxK +O(rk+4)

= F k+2
g̃ (x) +

n∑
i,j=1

1

k!

(
S̃ij,K(p)− TijK

)
xixjxK ,

(4.1.1)

where we have used the fact that g−normal coordinates differ from g̃−normal coordinates by O(rk+2)

(see Lemma 4.1.11 below) with {x̃i} being g̃−normal coordinates. By Euler’s formula, xixj∂i∂jf =

(xi∂i)
2f − xi∂if = (k+2)(k+1)f , and ∆gf = ∆f +O(rk+1) (see Lemma 4.1.11) where ∆ denotes the
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Euclidean Laplacian in x−coordinates. Thus the transformation law (A.0.18) for the Ricci tensor yields:

F k+2
g̃ (x) =

1

k!

∑
|K|=k

∑
ij

∂KR̃ij(p)x
ixjxK

=
1

k!

∑
|K|=k

∑
ij

∂K
(
Rij − (n− 2)(Hf )ij + (n− 2)(df ⊗ df)ij + (∆gf − (n− 2)∥df∥2)gij

)
(p)xixjxK

= F k+2
g (x) +

1

k!

∑
|K|=k

∑
ij

∂K
(
−(n− 2)(Hf )ij + (∆f +O(rk+1))(δij +O(r2))

)
(p)xixjxK

= F k+2
g (x) +

∑
ij

(2− n)xixj∂i∂jf ++xixj∆fδij

= F k+2
g (x)− (n− 2)(k + 2)(k + 1)f + r2∆f.

(4.1.2)

Note that there are no error terms in the previous calculations because we are evaluating all the terms at

p. The following lemma shows that r2∆−(n−2)(k+2)(k+1) is invertible on Pk+2 since (n−2)(k+2)(k+1)

is not an eigenvalue of r2∆, and as a consequence there is a unique f ∈ Pk+2 so that (4.1.1) is

satisfied.

Lemma 4.1.10. The eigenvalues of r2∆ on Pm are

{αj = −2j(n− 2 + 2m− 2j) : j = 0, ..., [m/2]}.

The eigenfunctions corresponding to αj are the functions of the form r2ju, where u ∈ Pm−2j is harmonic.

Proof. The result clearly holds in the cases m = 0 and m = 1 since in both cases [m/2] = 0 and

r2∆f = 0 for all f ∈ Pm. Now assume that m ≥ 2 and that the result holds up to m− 1. Let f ∈ Pm be

an eigenfunction of r2∆ corresponding to λ, i.e. r2∆f = λf . By Euler’s formula ∆f ∈ Pm−2 satisfies

λ∆f = ∆0(r
2∆0f) = ∆(r2)∆f − 2∂i(r

2)∂i(∆f) + r2∆2f

= −2n∆f − 4xi∂i(∆f) + r2∆2f

= −2n∆f − 4(m− 2)∆f + r2∆2f,

so r2∆(∆f) = (λ + 2n + 4m − 8)∆f . Then either ∆0f = 0, in which case λ = 0 and f is harmonic,

or λ + 2n + 4m − 8 is an eigenvalue of r2∆ on Pm−2 with eigenfunction ∆f . In the later case, f =

λ−1r2∆f and λ + 2n + 4m − 8 = −2j(n − 2 + 2m − 4 − 2j) for some j ∈ {0, ..., [(m − 1)/2]}, so

λ = −2n − 4m + 8 − 2j(n − 2 + 2(m − 2) − 2j) = −(j + 1)(n − 2 + 2m − 2(j + 1)). One easily checks

that λj ≤ [(m − 1)/2] implies that λj + 1 ≤ [m/2]. Furthermore, note that in the case where ∆f is an

eigenfunction of r2∆ in Pm−2 the induction hypothesis implies that ∆f = r2ju for some u ∈ Pm−2−2j ,

but then f = λ−1r2+2ju.

Lemma 4.1.11. If f ∈ Pk (with k ≥ 2) and g̃ = e2fg, then g−normal coordinates differ from g̃−coordinates

by O(rk+1). If k ≥ 2, ∆gf = ∆f +O(rk−1).
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Proof. Let k ≥ 2 and exp1 and exp2 denote the exponential maps relative to the metrics g and g̃, respec-

tively. To prove the result we need to show that given v ∈ TpM with ∥v∥ = 1, |x1(t) − x2(t)| = O(tk+1)

for small t, where x1(t) = exp1(tv) and x2(t) = exp2(tv). First we note that x1 is a geodesic for g and x2

is a geodesic for g̃, and as such (in g- normal coordinates {xi}):

ẍi1 +

n∑
i,j=1

Γijk(x1(t))ẋ
j
1ẋ
k
1 = 0, i = 1, ..., n, (4.1.3)

and

ẍi2 +

n∑
i,j=1

Γ̃ijk(x2(t))ẋ
j
2ẋ
k
2 = 0, i = 1, ..., n, (4.1.4)

where the Γ̃ijk denotes the Christoffel symbols of the metric g̃. Since Γ̃ijk = Γijk+δij∂kf+δik∂kf−gjk∇if ,

we have that Γ̃ijk = Γijk + O(tk−1). On the other hand, since {xi} are normal coordinates, Γijk(x1(t)) =

O(t) and Γ̃ijk(x2(t)) = O(t).

ẍi1 − ẍi2 =

n∑
j,k=1

Γ̃ijk(x2(t))ẋ
j
2ẋ
k
2 − Γijk(x1(t))ẋ

j
1ẋ
k
1 =

n∑
j,k=1

O(t)(ẋj2ẋ
k
2 − ẋj2ẋ

k
2) +O(tk−1)

=

n∑
j,k=1

O(t)(ẋj2ẋ
k
2 − ẋj1ẋ

k
2 + ẋj1ẋ

k
2 − ẋj1ẋ

k
1) +O(tk−1)

=

n∑
j,k=1

O(t)((ẋj2 − ẋj1)ẋ
k
2 + (ẋj1(ẋ

k
2 − ẋk1)) +O(tk−1)

=

n∑
j,k=1

O(t)((ẋj2 − ẋj1)(ẋ
k
2 + ẋk1) +O(tk−1).

This implies that

|ẍi1(t)− ẍi1(t)| ≤ +O(tk−1) +O(t)

n∑
j=1

|ẋj1(t)− ẋj2(t)|, (4.1.5)

for some constant C > 0. Since we are only concerned with small t there is a constant K > 0 for which

|ẋ1(t)− ẋ2(t)| ≤ K for t small, therefore by integrating we conclude that if k > 1

|ẋi1(t)− ẋi2(t)| = O(t2),∀i = 1, ..., n.

and by replacing this estimate in (4.1.5) we conclude that |ẋi1(t)− ẋi2| = O(t4),∀i = 1, ..., n. By iterating

this process we can conclude that |ẋi1(t)− ẋi2(t)| = O(tk) and therefore |x1(t)− x2(t)| = O(tk+1).

For the estimate on the Laplacian of f note that in g−normal coordinates we have

∆gf = −gij ∂2f

∂xi∂xj
+ Γkij

∂f

∂xk
gij = −(δij +O(r2))

∂2f

∂xi∂xj
+ Γkij

∂f

∂xk
gij = ∆f +O(rk)

The following is due to R. Graham.

Corollary 4.1.12. Given p ∈ M , N ≥ 0, there exists a metric conformal to g such that all symmetrized
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covariant derivatives of the Ricci tensor of order ≤ N vanish at p.

Proof. We proceed by induction in N . Choose T = 0 in the above theorem, and note that f ∈ PN+2

implies that ∇̃kR̃ij = ∇kRij for k < N . This is because, at p all the terms in the covariant derivatives up

to order N − 1 of R̃ic that are not the covariant derivatives of ∇k Ric are zero at p, and this is because

the Christoffel symbols, f and its derivative up to order N − 1 vanish at p.

Before continuing our path towards a proof of Theorem 4.1.8, we need to introduce the important

concept of Jacobi fields.

To prove Theorem 4.1.8 we will employ Jacobi fields. As such, a brief exposition, containing the

results we will use, is helpful. What follows regarding Jacobi fields is based on [11]. And all the proofs

that we omit may be found there.

Definition 4.1.13. Let c : I →M be a geodesic. A vector field X along c is called a Jacobi field if

∇ċ∇ċX +R(X, ċ)ċ = 0. (4.1.6)

As an abbreviation, we will write when possible

Ẋ = ∇ċX, Ẍ = ∇ċ∇ċX

A lot can be said about Jacobi fields, for our purposes, we only need a result that gives a characteri-

zation of Jacobi fields.

Theorem 4.1.14. Let c : [0, a] → M be a geodesic and c(·, ·) : [0, a] × (−ε, ε) → M ) a variation of c(t)

through geodesics, i.e., every curve c(t, s) =: cs(t) (for fixed s) is also a geodesic. Then

X(t) :=
∂

∂s
c(t, s)|s=0

(4.1.7)

is a Jacobi field along c(t) = c0(t). Furthermore, every Jacobi field can be obtained through this method.

Proof. See Theorem 6.2.1 in [11].

Corollary 4.1.15. Let c : [0, T ] → M be a geodesic and p = c(0), i.e., c(t) = expp(tċ(0)). For w ∈ TpM ,

the Jacobi field X along c with X(0) = 0, Ẋ(0) = w at the point c(t) is given by derivative of the

exponential map expp : TpM →M , evaluated at c(t) and applied to the vector tw:

X(t) =
(
d expp

)
tċ(0)

(tw), (4.1.8)

Proof. See Corollary 6.2.2 [11].
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From the previous corollary, one concludes that the derivative of the exponential map can be com-

puted from Jacobi fields along radial geodesics. Now, we are able to prove another Lemma from [13]

that will be a key step in the proof of Theorem 4.1.8.

Lemma 4.1.16. In g−normal coordinates, the determinant of the metric, det gij , has the expansion

det(gij) = 1− 1

3
Racx

axc − 1

6
Rac,kx

axcxk −
(

1

20
Rac,kl +

1

90
RaicjRljkd −

1

18
RacRkl

)
xaxcxkxl +O(r5),

(4.1.9)

where r = |x| and all the curvature terms are evaluated at p.

Proof. Let {xi} denote normal coordinates for g on a neighbourhood U of p, for simplicity we identify

U with an open set in Rn. To compute the expansion of the metric gij(x) we will apply the theory we

presented about Jacobi fields.

First, fix ξ, τ ∈ Rn and consider the map c : R × R → Rn given, in the coordinates {xi}, by c(t, s) =

t(τ + sξ), which is a one-parameter family of geodesics; in fact, c(t, s) is a variation through geodesics

of the geodesic c(t) := c(t, 0). The previous results about Jacobi fields imply that the variational vector

field given by X(cs(t)) = ∂
∂sc(t, s) = tξ is a Jacobi field along c(t). Also, define T as the vector field

along c(t, s) given by T (t, s) := ∂
∂sc(t, s). From now on, RT will denote the curvature endomorphism

R(T, ·)T . Now consider the function f(t) = |X(c(t, 0))|2, employing the Jacobi equation and differentiat-

ing repeatedly with respect to T we can compute the Taylor series of f . We now compute the first few

terms:

∇T f(0) = 2⟨∇TX(c0(t)), X(c0(t))⟩|t=0
= 0, (4.1.10)

because X(0) = 0. For the second term,

∇2
T f(0) = 2⟨∇2

TX(c0(t)), X(c0(t))⟩|t=0
+ 2⟨∇TX(c0(t)),∇TX(c0(t))⟩|t=0

= 2⟨RTX(c0(t)), X(c0(t))⟩|t=0
+ 2⟨∇TX(c0(t)),∇TX(c0(t))⟩|t=0

= 2⟨ξ, ξ⟩,

(4.1.11)

because ∇TX(0) = ξ (we are identifying vectors in the tangent space with vectors in Rn). From now on

we write X instead of X(c0(t)). For the third term,

∇3
T f(0) = 2⟨∇T (RT (X)), X)⟩|t=0

+ 2⟨RT (X),∇TX⟩|t=0
+ 4⟨∇2

TX,∇TX⟩|t=0

= 2⟨∇TRT (X), X⟩|t=0
+ 2⟨RT (∇T (X)), X⟩|t=0

+ 2⟨RT (X),∇TX⟩|t=0
+ 4⟨∇2

TX,∇TX⟩|t=0

= 2⟨∇TRT (X), X⟩|t=0
+ 2⟨RT (∇T (X)), X⟩|t=0

+ 6⟨RT (X),∇TX⟩|t=0

= 0,

(4.1.12)

because ∇T (RT (X)) = ∇TRT (X) +RT (∇TX) and RT (X(c0(t)))|t=0
= (tRτ (ξ)))|t=0

= 0.
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For the fourth term, we have

∇4
T f(0) = 2⟨∇T (∇TRT (X)), X⟩|t=0

+ 2⟨∇TRT (X),∇TX⟩|t=0
+ 2⟨∇T (RT (∇T (X))), X⟩|t=0

+ 2⟨RT (∇T (X)),∇TX⟩|t=0
+ 6⟨∇T (RT (X)),∇TX⟩|t=0

+ 6⟨RT (X),∇2
TX⟩|t=0

= 2⟨∇2
TRT (X)), X⟩|t=0

+ 2⟨∇TRT (∇TX)), X⟩|t=0
+ 2⟨∇TRT (X),∇TX⟩|t=0

+ 2⟨∇TRT (∇T (X))), X⟩|t=0
++2⟨RT (∇2

T (X))), X⟩|t=0
+ 2⟨RT (∇T (X)),∇TX⟩|t=0

+ 6⟨∇TRT (X),∇TX⟩|t=0
+ 6⟨RT (∇TX),∇TX⟩|t=0

+ 6⟨RT (X), RT (X)⟩|t=0

= 2⟨∇2
TRT (X)), X⟩|t=0

+ 4⟨∇TRT (∇TX)), X⟩|t=0
+ 8⟨∇TRT (X),∇TX⟩|t=0

+ 8⟨RT (∇TX),∇TX⟩|t=0
+ 2⟨RT (RT (X)), X⟩|t=0

+ 6⟨RT (X), RT (X)⟩|t=0

= 8⟨Rτξ, ξ⟩0,

(4.1.13)

because ∇TRT (X)|t=0
= 0 and RT (∇TX)|t=0

= ⟨Rτξ, ξ⟩0.

For the fifth term, we have

∇5
T f(0) = 2⟨∇3

TRT (X)), X⟩|t=0
+ 2⟨∇2

TRT (∇TX), X⟩|t=0
+ 2⟨∇2

TRT (X)),∇TX⟩|t=0

+ 4⟨∇2
TRT (∇TX)), X⟩|t=0

+ 4⟨∇TRT (∇2
TX)), X⟩|t=0

+ 4⟨∇TRT (∇TX)),∇TX⟩|t=0

+ 8⟨∇2
TRT (X),∇TX⟩|t=0

+ 8⟨∇TRT (∇TX),∇TX⟩|t=0
+ 8⟨∇TRT (X),∇2

TX⟩|t=0

+ 8⟨∇TRT (∇TX),∇TX⟩|t=0
+ 8⟨RT (∇2

TX),∇TX⟩|t=0
+ 8⟨RT (∇TX),∇2

TX⟩|t=0

+ 2⟨∇TRT (RT (X)), X⟩|t=0
+ 2⟨RT (∇TRT (X)), X⟩|t=0

+ 2⟨RT (RT (∇TX)), X⟩|t=0

+ 2⟨RT (RT (X)),∇TX⟩|t=0
+ 12⟨∇TRT (X), RT (X)⟩|t=0

+ 12⟨RT (∇TX), RT (X)⟩|t=0

= 2⟨∇3
TRT (X)), X⟩|t=0

+ 6⟨∇2
TRT (∇TX), X⟩|t=0

+ 10⟨∇2
TRT (X)),∇TX⟩|t=0

+ 6⟨∇TRT (RT (X)), X⟩|t=0
+ 20⟨∇TRT (∇TX)),∇TX⟩|t=0

+ 20⟨∇TRT (X), RT (X)⟩|t=0

+ 10⟨RT (RT (X)),∇TX⟩|t=0
+ 20⟨RT (∇TX), RT (X)⟩|t=0

+ 2⟨RT (∇TRT (X)), X⟩|t=0
+ 2⟨RT (RT (∇TX)), X⟩|t=0

= 20⟨∇τRτ (ξ), ξ⟩0.

(4.1.14)
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Finally, the sixth term is

∇6
T f(0) = 2⟨∇4

TRT (X)), X⟩|t=0
+ 2⟨∇3

TRT (∇TX)), X⟩|t=0
+ 2⟨∇3

TRT (X)),∇TX⟩|t=0

+ 6⟨∇3
TRT (∇TX), X⟩|t=0

+ 6⟨∇2
TRT (∇2

TX), X⟩|t=0
+ 6⟨∇2

TRT (∇TX),∇TX⟩|t=0

+ 10⟨∇3
TRT (X)),∇TX⟩|t=0

+ 10⟨∇2
TRT (∇TX)),∇TX⟩|t=0

+ 10⟨∇2
TRT (X)),∇2

TX⟩|t=0

+ 6⟨∇2
TRT (RT (X)), X⟩|t=0

+ 6⟨∇TRT (∇TRT (X)), X⟩|t=0
+ 6⟨∇TRT (RT (∇TX)), X⟩|t=0

+ 6⟨∇TRT (RT (X)),∇TX⟩|t=0
+ 20⟨∇2

TRT (∇TX)),∇TX⟩|t=0
+ 20⟨∇TRT (∇2

TX)),∇TX⟩|t=0

+ 20⟨∇TRT (∇TX)),∇2
TX⟩|t=0

+ 20⟨∇2
TRT (X), RT (X)⟩|t=0

+ 20⟨∇TRT (∇TX), RT (X)⟩|t=0

+ 20⟨∇TRT (X),∇TRT (X)⟩|t=0
+ 20⟨∇TRT (X), RT (∇TX)⟩|t=0

+ 10⟨∇TRT (RT (X)),∇TX⟩|t=0

+ 10⟨RT (∇TRT (X)),∇TX⟩|t=0
+ 10⟨RT (RT (∇TX)),∇TX⟩|t=0

+ 10⟨RT (RT (X)),∇2
TX⟩|t=0

+ 20⟨∇TRT (∇TX), RT (X)⟩|t=0
+ 20⟨RT (∇2

TX), RT (X)⟩|t=0
+ 20⟨RT (∇TX),∇TRT (X)⟩|t=0

+ 20⟨RT (∇TX), RT (∇TX)⟩|t=0
+ 2⟨∇TRT (∇TRT (X)), X⟩|t=0

+ 2⟨RT (∇2
TRT (X)), X⟩|t=0

+ 2⟨RT (∇TRT (∇TX)), X⟩|t=0
+ 2⟨RT (∇TRT (X)),∇TX⟩|t=0

+ 2⟨∇TRT (RT (∇TX)), X⟩|t=0

+ 2⟨RT (∇TRT (∇TX)), X⟩|t=0
+ 2⟨RT (RT (∇2

TX)), X⟩|t=0
+ 2⟨RT (RT (∇TX)),∇TX⟩|t=0

.

(4.1.15)

Since we are not going to compute any more terms we do not have to organise the terms in (4.1.15), we

can just get rid of the terms that are zero at t = 0

∇6
T f(0) = 36⟨∇2

TRT (∇TX),∇TX⟩|t=0
+ 10⟨RT (RT (∇TX)),∇TX⟩|t=0

+ 20⟨RT (∇TX), RT (∇TX)⟩|t=0
+ 2⟨RT (RT (∇TX)),∇TX⟩|t=0

= 36⟨∇2
τRτ (ξ), ξ⟩0 + 32⟨Rτ (ξ), Rτξ⟩0.

(4.1.16)

This implies that

⟨ξ, ξ⟩tτ = t−2|X(c0(t))|2

= ⟨ξ, ξ⟩0 +
t2

3
⟨Rτξ, ξ⟩0 +

t3

6
⟨∇τRτ (ξ), ξ⟩0 +

t4

20
⟨∇2

τRτ (ξ), ξ⟩0 +
2t4

45
⟨Rτξ,Rτξ⟩0 +O(t5).

(4.1.17)

Now substituting x = tτ and ξ = ∂
∂xi ± ∂

∂xj we get

gii(x) + 2gij(x) + gjj(x) = 2 + 2δij +
1

3
(Raici +Rajci +Raicj +Rajcj)x

axc

+
1

6
(Raici,k +Rajci,k +Raicj,k +Rajcj,k)x

axcxk

+
1

20
(Raici,kl +Rajci,kl +Raicj,kl +Rajcj,kl)x

axcxkxl

+
2

45
(RaicdRlimd +RaicdRljmd +RajcdRlimd +RajcdRljmd)x

axcxmxl +O(r5)

(4.1.18)
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and

gii(x)− 2gij(x) + gjj(x) = 2− 2δij +
1

3
(Raici −Rajci −Raicj +Rajcj)x

axc

+
1

6
(Raici,k −Rajci,k −Raicj,k +Rajcj,k)x

axcxk

+
1

20
(Raici,kl −Rajci,kl −Raicj,kl +Rajcj,kl)x

axcxkxl

+
2

45
(RaicdRlimd −RaicdRljmd −RajcdRlimd +RajcdRljmd)x

axcxmxl +O(r5),

(4.1.19)

since ∇ττ = 0 as cs(·) is a geodesic for every s, and hence ∇τRτ = ∇τR(τ, ·)τ and ∇2
τRτ = ∇2

τR(τ, ·)τ .

So by subtracting (4.1.19) from (4.1.18) and dividing by 4, we get

gij(x) = δij +
1

6
(Rajci +Raicj)x

axc +
1

12
(Rajci,k +Raicj,k)x

axcxk

+
1

40
(Rajci,kl +Raicj,kl)x

axcxkxl +
1

45
(RaicdRljmd +RajcdRlimd)x

axcxmxl +O(r5),

(4.1.20)

which simplify to

gij(x) = δij +
1

3
Raicjx

axc +
1

6
Raicj,kx

axcxk +

(
1

20
Raicj,kl +

2

45
RaicdRljkd

)
xaxcxkxl +O(r5).

(4.1.21)

If we define the matrix A = (Aij) by setting

Aij =
1

3
Raicjx

axc +
1

6
Raicj,kx

axcxk +

(
1

20
Raicj,kl −

1

90
RaicdRljkd

)
xaxcxkxl +O(r5), (4.1.22)

then

exp(Aij) = I +A+
1

2
A2 +O(r5)

= δij +
1

3
Raicjx

axc +
1

6
Raicj,kx

axcxk +

(
1

20
Rac,kl −

1

90
RaicdRljkd

)
xaxcxkxl

+
1

18
RaicdRljkdx

axcxkxl +O(r5)

= (gij).

(4.1.23)

Then, using the fact that det(gij) = exp(tr(Aij)), we get

det(gij) = exp

(
−1

3
Racx

axc − 1

6
Rac,kx

axcxk − 1

20
Rac,kl −

1

90
RaicdRljkdx

axcxkxl +O(r5)

)
= 1− 1

3
Racx

axc − 1

6
Rac,kx

axcxk −
(

1

20
Rac,kl +

1

90
RaicdRlikd −

1

18
RacRkl

)
xaxcxkxl +O(r5).

(4.1.24)

We need an extra technical lemma in order to prove Theorem 4.1.8
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Lemma 4.1.17. Let f(t) = |X(c(t, 0))|2 be as in the proof of Lemma 4.1.16. Then every term in the

Taylor expansion of ⟨ξ, ξ⟩tτ has the form

ckt
k
(
⟨∇k−2

τ Rτ (ξ), ξ⟩+Bk(ξ, ξ)
)
, (4.1.25)

for k ≥ 3, where ck is a constant and Bk is a bilinear form constructed from Rτ , and its derivatives of

order less than k − 2.

Proof. Start by noting that

∇k
T f =

k∑
i=0

(
k

i

)
⟨∇k−i

T X,∇i
TX⟩, (4.1.26)

which, for k ≥ 3, we can write as (taking into account that X = 0 at t = 0),

∇k
T f = 2k⟨∇k−1

T X,∇TX⟩+ C(X,X) = 2k⟨∇k−3
T RT (X),∇TX⟩+ C(X,X)

= 2k⟨∇k−4
T RT (∇TX),∇TX⟩+ C1(X,X)

where C and C1 are bilinear forms constructed from RT and its derivatives of order less than k − 2,

more specifically, C is what remains from (4.1.26) when we subtract 2⟨∇k−1
T X,∇TX⟩ from ∇k

T f and C1

is what remains when we subtract 2k⟨∇k−4
T RT (∇TX),∇TX⟩ from ∇k

T f . Now, the result follows when

we replace t = 0.

Now we are ready to prove Theorem 4.1.8.

Proof of Theorem 4.1.8. We prove that for everyN ≥ 2 there is a conformal metric g̃ such that det(g̃ij) =

1+O(rN ) as r → 0+, where r = |x| in g̃−normal coordinates at p, by an induction argument. For N = 2

we know the result is true in the usual normal coordinates. Now assume by induction that g satisfies

det(gij) = 1 + O(rN ), N ≥ 2. By Lemma 4.1.17 each term in the expansion (4.1.17) of ⟨ξ, ξ⟩tτ is of the

form (4.1.25), therefore, using the notation from the proof of Lemma 4.1.16, we have

⟨ξ, ξ⟩tτ = ⟨ξ, ξ⟩0 +
N∑
k=1

2ktk⟨∇τ Rτ (ξ), ξ⟩0 + tkBk(ξ, ξ).

Then, proceeding as in the proof of Lemma 4.1.16 (and using the same definitions) we that the compo-

nents of the matrix A = (Aij) have the expansion

Aij =

N∑
|K|=0

αK
(
Raicj,K + SkaicjK

)
xaxcxK +O(rN+1),

where k = |K|, for k ≥ 2, SaicjK are the components of a symmetric tensor Sk on TpM constructed from

the curvature and its derivatives of order less than |K| − 2, and for k < 2 we get the explicit formulas for

the tensors Sk in (4.1.23). Then, taking the trace of the matrix A = (Aij) yields:

tr(A) =

N∑
|K|=0

αK

(
Rac,K + S

k

acK

)
xaxcxK +O(rN+1),
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where, S
k

acK =
∑
ij S

k
aicjK . But then the formula det(gij) = 1+O(rN ) together with the formula det(gij) =

exp(trA) we see that

det(gij) = 1 +
∑

|K|=n−2

cN (Rij.K − TijK)xixjxK +O(rN+1), (4.1.27)

where TijK are the coefficients of a symmetric tensor T on TpM constructed from the curvature and its

derivatives of order less thanN−2. By Theorem 4.1.9, there is a unique f ∈ PN , for which Sym(∇̃R̃ij) =

T , where R̃ij denotes the Ricci tensor of g̃ = e2fg and ∇̃ the Levi-Civita connection of g̃. However, the

transformation laws for the Ricci tensor (A.0.17) show that T = T̃ (where T̃ is constructed in the same

way as T ) when f ∈ PN , so det(gij) vanishes up to order N + 1 in g̃−normal coordinates, hence

det((gij)) = 1 +O(rN+1).

Now we prove the second part of the theorem. Assume that N ≥ 5, and (for simplicity) replace g̃ with g.

The condition det(gij) = 1+O(rN ) implies that the symmetrization of the coefficients of (4.1.9) vanishes

at p:

Rac = 0, (4.1.28)

Rac,k +Rck,a +Rka,c = 0, (4.1.29)

Sym(Rac,kl +
2

9
RaicdRlikd) = 0. (4.1.30)

Then Rijkl =Wijkl by (4.1.28) and

Rac,kl −Rac,lk = RmklaRmc +RmklcRam = 0,

by (A.0.10). So (4.1.30) gives

0 = (Rac,kl +Rkl,ac +Ral,ck +Rck,al +Rak,cl +Rcl,ak)x
ixj

+
2

9
(WaicdWlikd +WaicdWlikd +WaikdWcild +WaikdWlicd +WaildWcikd +WaildWkicd)x

axc

= (Rac,kl +Rkl,ac + 2Ral,ck + 2Rck,al)x
axc

+
2

9
(WaicdWlikd +WaicdWkild +WaikdWcild +WaikdWlicd +WaildWcikd +WaildWkicd)x

axc.

Now contract on k, l, noting the contracted Bianchi identity A.0.13 to obtain

0 = (3S,ac +Rac,kk+)xaxc

+
2

9
(WaicdWlikd +WaicdWlikd +WaikdWcild +WaikdWlicd +WaildWcikd +WaildWkicd)x

axc.
(4.1.31)

The first Bianchi identity together with the fact that we are summing in the indices k, p,m yieldWaikdWkicd =

1
2Waikd(Wkicd −Wdick) =

1
2WaikdWcikd, so by the symmetries of the Weyl tensor:

0 = (3S,ac +Rij,kk +
2

3
WaikdWcikd)x

axc +
2

9
(2WaicdWkikd)x

axc, (4.1.32)
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but
∑
kWkikd = −Rid = 0, and so (4.1.29) becomes

0 = (3S,ac +Rij,kk +
2

3
WaikdWcikd)x

axc. (4.1.33)

Now contracting on i, j implies ∆gS = −S,jj = 1
6 |W |2 at p.

Finally, S(p) = Rjj(p) = 0 by (4.1.28) and 0 = (2Rjk,k +Rkk,j)(p) = 2S,j(p) by (4.1.29) and the Bianchi

identity, so S = O(r2).

Remark 4.1.18. Looking at the proofs of the lemmas that were used in the proof of Theorem 4.1.8, we

can not only conclude that for every N ∈ N there are conformal normal coordinates, in which det(gij) =

1 + O(rN ) where r = |x|, but we also have ∂i det(gij) = O(rN−1). One may wonder whether or not

around every point p ∈ M there are local coordinates {xi} centred around p in which det(gij) = 1.

Indeed, this is the case. It was pointed out to me by T.H. Parker in a private communication that in

1991 Jianguo Cao published a very interesting paper titled ”The Existence of Generalized Isothermal

Coordinates for Higher Dimensional Riemannian Manifolds” [6], where the author shows the existence

of coordinates around any given point in M under which det(gij) = 1. The methods used by the Cao are

of a completely different nature to the ones we have exposed.

Using the fact that we have det(gij) = 1 + O(rN ) in conformal normal coordinates, we can prove

that λ(M) < λ(Sn) for a compact Riemannian manifold (M, g) of dimension n ≥ 6 that is not locally

conformally flat. This result was originally proved by Aubin in [2]. However, Lee and Parker in [13],

showed the same result using the results above, which makes the proof a lot more straightforward than

Aubin’s original proof.

Definition 4.1.19. A Riemannian manifold (M, g) is said to be locally conformally flat if it is locally

conformal to the Euclidean space, Rn, equipped with the Euclidean metric.

Theorem 4.1.20 (Aubin). Let (M, g) be a compact, connected Riemannian manifold of dimension n ≥ 6

that is not locally conformally flat then λ(M) < λ(Sn).

Proof. Since M is not locally conformally flat, then by the Weyl-Schouten Theorem, there is p ∈M such

that the Weyl tensor at p is nonzero, W (p) ̸= 0. Indeed, this is the key to proving the theorem since it

allows for a better estimation of the term regarding the scalar curvature in the energy functional.

Let p ∈ M such that W (p) ̸= 0 and let {xi} be conformal normal coordinates in a neighbourhood

of p ∈ M . For ε > 0, let Bε denote the ball of radious ε in Rn, and η a smooth radial cutoff function,

0 ≤ η ≤ 1, supported in B2ε with η ≡ 1 on Bε, and let φα = ηuα, where uα(x) =
(

|x|2+α2

α

)(2−n)/2
, for

x ∈ Rn. Now take ε > 0 small enough so that B2ε is contained in the domain of the conformal normal

coordinates. Also, assume that in the selected coordinates, we have dVg = (1 + O(rN ))dx with N ∈ N

large. The estimates of Lemma 2.0.2 are modified as follows:

E(φα) =

∫
B2ε

a|∇φα|2 + Sφ2
αdVg = (1 + CεN )

∫
B2ε

a|∇φα|2 + Sφ2
αdx+O(αn−2)

≤ (1 + CεN )

(
λ(Sn)∥φα∥2L2∗ (Rn) + Cαn−2 +

∫
B2ε

Sφ2
αdx

)
,
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for some positive constant C. Setting Aε = B2ε − Bε and recalling that in the conformal normal coordi-

nates S = O(r2) and ∆gS(p) =
1
6 |W (p)|2, so

∫
B2ε

Sφ2
αdx ≤

∫
Bε

Su2αdx+

∫
Aε

u2αdx

=

∫ ε

0

∫
∂Br

1

2
(S,ij(p)x

ixj +O(r3))u2αdωrdr

=

∫ ε

0

∫
Sn

1

2

(
r2S,ij(p)x

ixj +O(r3)
)
u2αr

n−1dωdr +O(αn−2)

=

∫ ε

0

1

2

(
r2S,ij(p)δij +O(r3)

)
u2αr

n−1dr +O(αn−2)

=

∫ ε

0

(
−C1r

2|W (p)|2 +O(r3)
)
u2αr

n−1dr +O(rn−2),

where C1 > 0 is some positive constant. Note that to obtain the last equality we used the fact that∫
Sn

xixjdω = δij . So Lemma 2.1.4 shows that

E(φα) ≤ (1 + CεN )

λ(S
n)∥φα∥2L2∗ (Rn)

− C1|W (p)|2α4 + o(α4) if n > 6

λ(Sn)∥φα∥2L2∗ (Rn)
− C1|W (p)|2 log(1/α)α4 +O(α4) if n = 6

Since, ∥φα∥2L2∗ (M)
≥ (1− CεN )1/2

∗∥φα∥L2∗ (Rn), dividing E(φα) by ∥φα∥2L2∗ (M)
we obtain

Qg(φα) ≤


1+CεN

(1−CεN )1/2∗
λ(Sn)− ∥φα∥−2

L2∗ (M)
(C1|W (p)|2α4 − o(α4)) if n > 6

1+CεN

(1−CεN )1/2∗
λ(Sn)− ∥φα∥−2

L2∗ (M)
(C1|W (p)|2 log(1/α)α4 −O(α4)) if n = 6.

(4.1.34)

Now chose α > 0 sufficiently small so that

−C1|W (p)|2α4 + o(α4) < 0

and

−C1|W (p)|2 log(1/α)α4 +O(α4)) < 0.

Since 1+CεN

(1−CεN )1/2∗
≤ 1 + C2ε

N (for some positive constant C2) we are able to conclude that

Qg(φα) ≤

λ(S
n) + C2λ(Sn)εN − ∥φα∥−2

L2∗ (M)
(C1|W (p)|2α4 − o(α4)) if n > 6

λ(Sn) + C2ε
Nλ(Sn)− ∥φα∥−2

L2∗ (M)
(C1|W (p)|2 log(1/α)α4 −O(α4)) if n = 6.

(4.1.35)

Thus, by choosing N large enough, we see that

Qg(φα) < λ(Sn).
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The restrictions of this approach to dimensions greater or equal to 6 arise from applying Lemma 2.1.4

with k = 2.

4.2 Stereographic Projections

We have seen that when M is a not locally conformally flat compact Riemannian manifold with

dimension dimM ≥ 6, λ(M) < λ(Sn). Hence the results in Chapter 3 show that there is a solution to the

Yamabe Problem. But what about the remaining cases? Can we show that λ(M) < λ(Sn) when (M, g)

is not conformal to the standard sphere, Sn? The answer is, yes we can. But to get there we need to

introduce the concept of a stereographic projection of a compact Riemannian manifold. For this, we will

need the Green function of the operator Lg. We start with an existence result. The exposition in this

section follows closely section 6 from [13].

Theorem 4.2.1 (Existence of Green’s Function). Suppose (M, g) is a compact Riemannian manifold of

dimension n ≥ 3, and let h be a strictly positive smooth function on M . For each p ∈M , there is a unique

smooth function Γp on M \ {p}, called the Green function for ∆g + h at p, such that (∆g + h)Γp = δp, in

the distributional sense, where δp is the Dirac mass at p.

Proof. See Appendix A of [7].

Lemma 4.2.2. Let (M, g) be a compact Riemannian manifold, such that, λ(M) > 0. Then, at each point

p ∈M , the Green function Γp for Lg exists and is strictly positive.

Proof. Fix l < 2∗, and let u be the smooth positive solution to the subcritical equation Lgu = λlu
l−1,

given by Theorem 3.1.1, and define the metric g′ = u2
∗−2g. The scalar curvature of this new metric is

S′ = u1−2∗Lgu = λl(M)u1−2∗−1+l = λl(M)ul−2∗ (by the transformation law (A.0.19)). Since λ(M) > 0,

arguing as in Lemma 3.1.2, we see that λl(M) > 0, and consequently, S′ > 0. So, by Theorem 4.2.1 the

Green function Γ′
p for Lg′ exists. If Γ′

p is nonpositive at some point, by the Strong Maximum Principle Γ′
p

is constant, which is false. If Γ′
p was constant, then LgΓ′

p = S′Γ′
p ∈ L2(M) which implies that the delta

Dirac distribution is in L2(M), but this is impossible. Now set Γp(x) = u(p)u(x)Γ′
p(x), which is strictly

positive by construction. Thus, for any f ∈ C∞(M) we have due to Lg′(u−1f) = u1−2∗Lgf and Theorem

4.2.1:

u−1(p)f(p) =

∫
M

Γ′
p(x)Lg′(u−1(x)f(x))dVg′ =

∫
M

u−1(p)u−1(x)Γp(x)(u
1−2∗(x)Lg(f(x)))u2

∗
(x)dVg

= u−1(p)

∫
M

Γp(x)Lg(f(x))dVg(x),

which implies that LgΓp(x) = δp, in the distributional sense, i.e., Γp is the Green function for Lg.

The results in Chapter 3 already give the solution of the Yamabe problem whenever λ(M) ≤ 0 (recall

that λ(Sn) > 0). Therefore, from now on we assume that λ(M) > 0.

In Chapter 2, we used the standard stereographic projection from Sn \ {P} (where P is the north

pole) onto Rn to transport the Yamabe problem in the standard sphere to a problem in Rn. And Schoen
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in [16], to prove that λ(M) < λ(Sn), when (M, g) is a compact connected Riemannian manifold of

dimension n = 4, 5 not conformal to the standard sphere, had the idea to consider the metric G2∗−2g on

M \ {p} where G is a constant multiple of the Green function of Lg at p. This made the problem simpler.

Inspired by this, Lee and Parker in [13], were able to use conformal normal coordinates to prove that

λ(M) < λ(Sn), whenever (M, g) is either locally conformally flat or has dimension dimM = 3, 4, 5, and

is not conformal to the standard sphere. First, they introduce the generalized notion of stereographic

projection.

Definition 4.2.3. Let (M, g) be a compact, connected Riemannian manifold with λ(M) > 0. For p ∈ M

define the metric ĝ = G2∗−2g on M̂ =M \ {p}, where

G = (n− 2)aωn−1Γp, (4.2.1)

where ωn−1 denotes the measure of the standard sphere §n−1. The manifold (M̂, ĝ) together with the

natural map σ :M \ {p} → M̂ is called the stereographic projection of M from p.

Note that if in the above definition, M is the standard sphere and p is the north pole then the stereo-

graphic projection coincides with the one used in Chapter 2.

Another concept that we will need going forward is that of an asymptotically flat manifold, which we now

introduce.

Definition 4.2.4 (Lee, Parker [13]). A Riemannian manifold (N, g)is said to be asymptotically flat of

order τ > 0 if there exists a decomposition N = N0 ∪ N∞, with N0 compact, and a diffeomorphism

N∞ → Rn \BR(0) for some R > 0, satisfying

gij = δij +O(ρ−τ ), ∂kgij = O(ρ−τ−1), ∂k∂lgij = O(ρ−τ−2), (4.2.2)

as ρ = |z| → ∞, where {zi} are the coordinates induced by the diffeomorphism on N∞. The coordinates

{zi}, will be henceforth called asymptotic coordinates.

Before proceeding, a word on notation is necessary.

Notation 4.2.5. When we write f = O′(rk), we mean f = O(rk) and ∇f = O(rk−1). O′′ is defined in

the same way. Denote the set of smooth functions that vanish up to order k at p by Ck. And denote the

set of homogeneous polynomials of degree k by Pk,

An instrumental tool in [16] and [13] was an asymptotic expansion of the function G around p.

Lemma 4.2.6. Let G be given by (4.2.1). Let {xi} be conformal normal coordinates at p, such that

det(gij) = 1 + O(rN ) with N ≥ 2 dimM , where r = |x| is the geodesical distance. Then, in these

coordinates, G has an asymptotic expansion in terms of geodesic distance r from p:

G(x) = r2−n

(
1 +

n∑
k=4

ψk

)
+ c log(r) +O′′(1), (4.2.3)

ψk ∈ Pk, c ∈ R and the log term appears only if n is even. The leading terms are:
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(h1) if n = 3, 4, 5, or M is conformally flat in a neighbourhood of p,

G = r2−n +A+O′′(1), (A = constant);

(h2) if n = 6,

G = r2−n − 1

288a
|W (p)|2 log(r) +O′′(1);

(h3) if n ≥ 7,

G = r2−n
[
1 +

1

12a(n− 4)

(
r4

12(n− 6)
|W (p)|2 − S,ij(p)x

ixjr2
)]

+O′′(r7−n).

Proof. Let φ be a radially symmetric function. Since in polar conformal coordinates grr = 1, when we

apply the Laplace-Beltrami operator ∆g to radially symmetric functions we have, since gri = 0 for i ̸= r,

∆gφ = − 1√
det(g̃ij)

∂i

(
gir
√
det(g̃ij)∂rφ

)
= − 1

rn−1
√
det(gij)

∂i

(
girrn−1

√
det(gij)∂rφ

)

= − 1

rn−1
∂r
(
rn−1∂rφ

)
−
∂rφ∂r

(√
det(gij)

)
√
det(gij)

= ∆0φ−
∂rφ∂r

(√
det(gij)

)
√
det(gij)

,

where g̃ is the metric g written in conformal polar coordinates. Now write G = r2−n(1 + ψ). Using the

fact that, in the distributional sense ∆0r
2−n = (n − 2)ωn−1δp on U (an open neighbourhood of 0 in Rn

containing the origin), the equation LgG = (n− 2)ωn−1δp becomes

Lg(r2−nψ) + Sr2−n −
∂r(r

2−n)∂r

(√
det(gij)

)
√

det(gij)
= 0. (4.2.4)

By setting α =
∂r(r

2−n)∂r
(√

det(gij)
)

√
det(gij)

we get

Lg(r2−nψ) + Sr2−n − α = a∆g(r
2−nψ) + r2−n(Sψ + S)− α

= −
∂i

(
gij
√
det(gij)∂j(r

2−nψ)
)

√
det(gij)

+ r2−n(Sψ + S)− α

= −∂i
(
gij∂j(r

2−nψ)
)
+ r2−n(Sψ + S) + K̃(ψ),

where K̃(ψ) = −α − gij∂j(r
2−nψ)∂i(det(gij))
det(gij)

. Now by setting K(ψ) = ∂i((δij − gij)∂jψ),and multiplying

equation (4.2.4) by rn/a, setting L = r2∆0 + 2(n − 2)r∂r, and assuming ψ to be C2, equation (4.2.4) is

equivalent to

Lψ +
r2

a

(
S + Sψ + aK(ψ) + rn−2K̃(ψ)

)
= 0. (4.2.5)

We begin by computing a formal asymptotic solution to this equation, by writing ψ = ψ1 + ψ2 + · · ·+ ψn,

with ψk ∈ Pk, and finding each ψk with an induction argument. By assumption, we know, by Theorem
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4.1.8 that det(gij) = 1+O(rN ) and ∂i det(gij) = O(rN−1) (see Remark 4.1.18). This, in turn, implies that

rn−2K̃(ψ) = O(rn+1). Since S = O(r2) in the coordinates {xi}, and the operators L and K preserve

the degree of homogeneous polynomials, we start by setting ψ1 = ψ2 = ψ3 = 0. This is due to the fact

that for k = 1, 2, 3, we have

r2

a

(
S + Sψk + aK(ψk) + rn−2K̃(ψk)

)
= O(r4),

and Lψk = O(rk).

Now, suppose by induction that we have found ψ = ψ1 + · · · + ψk−1, with ψ1 = ψ2 = ψ3 = 0, such

that

Lψ +
r2

a

(
S + Sψ + aKψ + rn−2K̃ψ

)
∈ Ck. (4.2.6)

Write Lψ+ r2

a

(
S + Sψ + aKψ + rn−2K̃ψ

)
as bk +ϕ, for some bk ∈ Pk and ϕ ∈ Ck+1. Now assume that

we can find ψk ∈ Pk such that

Lψk + bk = 0,

then by noting that r2Sψk ∈ Ck+4, r2K(ψk) ∈ Ck+2 and the error term is of order O(rn+1), when we

replace ψ by ψ1 + · · · + ψk−1 + ψk (4.2.6) is satisfied when k is replaced by k + 1, thus completing the

induction step. Hence to complete the proof we need to solve the equation Lψk + bk = 0. First, consider

the case when n = dim(M) is odd. By Euler’s formula, L = r2∆0 + 2k(n − 2) on Pk, so Lemma 4.1.10

shows that L is always invertible on Pk, so we can simply take ψk = −L−1(bk). By induction there exists

ψ = ψ1 + · · ·+ ψn such that (4.2.6) holds with k = n+ 1, which is equivalent to

Lg
(
r2−nψ

)
+ Sr2−n ∈ r−nCn+1 (4.2.7)

When n is even this method works for k < n − 2, but then breaks down when k ≥ n − 2 since L is

no longer invertible in these cases. However, by noting that L is self-adjoint on Pk with respect to the

Euclidean product ⟨
∑
I aIx

I ,
∑
J bJx

J⟩ =
∑
I aIbI on Pk, then Pk = Im(L) ⊕ ker(L). For k < n − 2 we

proceed as in the odd-dimensional case. When k ≥ n− 2 and ker(L) ̸= {0}, we will try a function of the

form ψk = pk + qk log(r), with pk, qk ∈ Pk. The image via L of a function like this is

Lψk = Lpk + L(qk) log(r) + r2qk∆0(log(r))− 2r2∂i(qk)∂i(log(r)) + 2(n− 2)r∂r(log(r))qk

= Lpk + Lqk log(r) + (n− 2− 2k)qk.

Thus, if k ≥ n− 2 we can solve Lψk + bk = 0, with bk ∈ Pk, by writing −bk = Lpk + qk, with qk ∈ ker(L)

(the uniqueness of pk and qk is given by the decomposition Pk = Im(L)⊕ ker(L)) and setting

ψk = pk + (n− 2− 2k)−1qk log(r).

In fact, using Lemma 4.1.10 again we know that ker(L) is spanned by rn−2, thus there exists c ∈ R

and pn−2 ∈ Pn−2 such that ψn−2 = pn−2 + crn−2 log(r) satisfies Lψn−2 + bn−2 = 0. Before proceeding
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with the remaining cases we should verify whether or not ψn−2 introduces any logarithmic error terms

on the right-hand side of (4.2.6). Indeed if ϕ is a radially symmetric function the definition of K and the

expansion (4.1.21) of the components of the metric yield

Kϕ = ∂i

((
1

3
Rkiljx

kxl +O(r3)

)
xj

r
∂rϕ

)
,

but Rkiljxkxlxj = 0, by the symmetries of the Riemann curvature tensor, so if we take ψn−2 as above

we have Kψn−2 = Kpn−2+cK(rn−2 log(r)) ∈ Cn−2+Cn−1 log(r), since Kpn−2 = O(rn−2) (i.e. Kpn−2 ∈

Cn−2) and

K(rn−2 log(r)) = ∂i

((
δij − gij

) xj
r

(
(n− 2)rn−3 log(r) + rn−3

))
∈ Cn−2 + Cn−1 log(r).

So writing ψ = ψ1 + · · ·ψn−2, we get Lψ+ r2

a

(
S + Sψ + aKψ + K̃ψ

)
∈ Cn−1 + Cn+1 log(r), and so ψn−2

does not introduce any logarithmic errors in the right-hand side of (4.2.6).

Now we proceed with the remaining cases. By writing

Lψ +
r2

a

(
S + Sψ + aKψ + K̃ψ

)
= bk + ϕk+1 + ϕn+1 log(r),

where ϕk+1 ∈ Ck+1 and ϕn+1 ∈ Cn+1, we can solve as before for ψk ∈ Pk + log(r)Pk, k = n − 1, n. We

end up with ψ = ψ1 + · · ·+ ψn such that

Lg
(
r2−nψ

)
+ Sr2−n ∈ r−nCn+1 + r−n log(r)Cn+1. (4.2.8)

This gives the desired homogeneous polynomials in the expansion (4.2.3) of G. Now for any n, write

ψ = ψ + φ. Using (4.2.4) and (4.2.7) or (4.2.8) we find

Lg(r2−nφ) = −Lg
(
r2−nψ

)
− Sr2−n ∈ Cα.

Therefore, by elliptic regularity theory r2−nφ ∈ C2,α. This shows (4.2.3).

Now it only remains to check the desired expansions of G.

If M is conformally flat near p, then S = 0 near p, so (4.2.4) shows that r2−nφ is harmonic since ψ = 0

and hence C∞. Thus G = r2−n + A + O′′(r) for some constant A in the case that M is conformally flat

near p. If n = 3, 4, 5 the same result hold since then r2−nφ ∈ C2,α and r2−nψ = O′′(r).

Finally, if n ≥ 6 we need to confirm the expressions for ψ4. To that end, expanding S in its Taylor series

at p, the above proof shows that ψ4 is such that

Lψ4 = − 1

2a
r2Skl(p)x

kxl. (4.2.9)

When n > 6 we look for solutions of the form ψ4 = bklr
2xkxl. We have

Lr4 = r2∆0(r
4) + 8(n− 2)r4 = 2r4∆0(r

2)− 2r2∇0(r
2) · ∇0(r

2) = 4(n− 6)r4,
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and

L(bklx
kxlr2) = bkl

(
r2(∆0(r

2)xkxl + r2∆0(x
kxl)− 8xkxl) + 8(n− 2)xkxlr2

)
= bkl(p)

(
−2(n+ 4)r2xkxl − 2δklr

2
)
+ 8(n− 2)bklx

kxlr2

= 6(n− 4)bkl(p)x
kxlr2 − 2bkkr

2.

So if we take

ψ4 =
1

12a(n+ 4)

(
|W (p)|2r4

12(n− 6)
− S,kl(p)x

kxlr2
)
,

we have by linearity

Lψ4 =
1

12a(n+ 4)

(
|W (p)|2L(r4)
12(n− 6)

− L(S,kl(p)x
kxlr2)

)
=

1

12a(n+ 4)

(
4|W (p)|2(n− 6)r4

12(n− 6)
− 6(n− 4)S,kl(p)(p)x

kxlr2 + 2S,kk(p)r
2)

)
= − 1

2a
r2S,kl(p)x

kxl.

On the other hand, when n = 6 we need to be a bit more creative and look for solutions of the form

ψ4 = bklr
2xkxl + cklr

2xkxl log(r). Direct computations show that

L(cklr
2xkxl log(r)) = L(cklr

2xkxl) log(r) + (n− 2− 8)cklr
2xkxl

= 6(n− 4)ckl(p)x
kxlr2 log(r)− 2ckkr

2 log(r)− 4cklr
2xkxl.

So, using the calculations above, by taking ψ4 = − 1
24a

(
S,kl(p)x

kxlr2 + |W (p)|2r2
12 log(r)

)
we find

Lψ4 = − 1

24a

(
L(S,klr

2xkxl) +
|W (p)|2

12
L(r4 log(r))

)
= − 1

24a

(
6(n− 4)S,kl(p)x

kxlr2 − 2S,kk(p)r
2 +

|W (p)|2

12

(
6(n− 4)r4 log(r)− 2nr4 log(r)− 4r4

))
= − 1

2a
r2S,kl(p)x

kxl.

Thus the Lemma is proven.

Using this lemma, we are able to prove that (M̂, ĝ) is asymptotically flat. To see this, let {xi} be

conformal normal coordinates as in the previous lemma and U the corresponding neighbourhood of p in

M . Now, define the inverted conformal normal coordinates zi = xi

r2 on U \ {p}. By setting ρ = |z| = r−1

we have
∂

∂zi
=
∂xj

∂zi
∂

∂xj
= ρ−2

(
δij − 2ρ−2zizj

) ∂

∂xj
.

So, writing γ = rn−2G and remembering expansion (4.1.21) of the components of the metric components
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gij , the components of ĝ in z−coordinates are

ĝij(z) = γn−2ρ4g

(
∂

∂zi
,
∂

∂zj

)
= γ2

∗−2
(
δik − 2ρ−2zizk

) (
δjl − 2ρ−2zjzl

)
gkl(ρ

−2z)

= γ2
∗−2

(
δik − 2ρ−2zizk

) (
δjl − 2ρ−2zjzl

) (
δkl +O′′(ρ−2)

)
= γ2

∗−2
(
δikδjl − 2δikρ

−2zjzl − 2δjlρ
−2zizk + 4δikδjlρ

−4zizkzjzl
) (
δkl +O′′(ρ−2)

)
= γ2

∗−2
(
δikδjlδkl +O′′(ρ−2)

)
= γ2

∗−2
(
δij +O′′(ρ−2)

)
.

(4.2.10)

In particular, if (M, g) is conformally flat near p, then we can choose conformal normal coordinates

around p such that γkl = δkl, so this reduces to

ĝij(z) = γ2
∗−2δkl

(
δikδjl − 2δikρ

−2zjzl − 2δjlρ
−2zizk + 4δikδjlρ

−4zizkzjzl
)

= γ2
∗−2δij .

Using the asymptotic expansion of G in conformal normal coordinates obtained in Lemma 4.2.6 we

obtain:

Theorem 4.2.7 (Lee, Parker [13]). Let {xi} be conformal normal coordinates such that det(gij) = 1 +

O(rN ), with N ≥ 2 dimM , and let {zi} be the corresponding inverted conformal normal coordinates.

Then, the metric ĝ as defined in Definition 4.2.3 is asymptotically flat of order 1 if n = 3, order 2 if n ≥ 4

and order n− 2 if M is conformally flat near p. Furthermore, in these coordinates, the components of ĝ

have the expansion

ĝij(z) = γp−2(z)(δij +O(ρ−2)), (4.2.11)

where, as in Lemma 4.2.6,

(h1) γ(z) = 1 +Aρ2−n +O′′(ρ1−n) with A = constant, if dimM = 3, 4, 5 or (M, g) is locally conformally

flat;

(h2) γ(z) = 1 + 1
288a |W (P )|2ρ−4 log ρ+O′′(ρ−4) if dimM = 6 and (M, g) is not locally conformally flat;

(h3) γ(z) = 1 + 1
12a(n−4)ρ

−6
(

ρ2

12(n−6) |W (P )|2 − S,ij(P )z
izj
)
+ O′′(ρ−5) if dimM > 6 and (M, g) is not

locally conformally flat.
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Chapter 5

Construction of the Test Function

The purpose of this chapter is to construct the test function on the asymptotically flat manifold (M̂, ĝ)

for which the Yamabe quotient depends on a number called the distortion coefficient, which depends

on the geometry of (M̂, ĝ). In Chapter 6 we will determine the sign of the distortion coefficient using

the celebrated Positive Mass Theorem, and we will see that it is always non-negative. Furthermore, it

turns out that it is zero only in the case where (M, g) is in the conformal class of the standard sphere.

This, together with the contents of this chapter will enable us to prove that λ(M) < λ(Sn) in the cases

that remain. Those cases are when (M, g) is a compact, connected Riemannian manifold that is not

in the conformal class of the standard sphere and is either locally conformally flat or has dimension

dimM = 3, 4, 5. This was originally proved by Schoen in [16]. However, whilst in his paper Schoen

proves that λ(M) < λ(Sn) using one method when dimM = 3 or (M, g) is locally conformally flat

and uses a different method to prove the same result when M has dimension 4 or 5, Lee and Parker

in [13] were able to show the same result using one method. To do this, the authors use the machinery

developed in the previous chapter.

In this chapter, we closely follow section 7 from [13], having added all the details.

As mentioned above, we will construct a test function on the asymptotically flat manifold (M̂, ĝ) where

the geometry is closer to that of Rn, hence simpler. However, we need to see why this is helpful.

To that end, let (M, g) be a compact, connected Riemannian manifold of dimension dimM ≥ 3 with

positive Yamabe invariant, λ(M) > 0, and let (M̂, ĝ) be the stereographic projection of (M, g) from some

point p ∈M . Recall the definition of the Yamabe invariant:

λ(M) = inf
φ∈C∞(M)

φ̸=0

Qg(φ).

Using standard density arguments show that

λ(M) = inf
φ∈C∞

c (M\{p})
φ̸=0

Qg(φ).

51



Now let φ ∈ Cc(M \ {p}), and note that

Qĝ(φ) :=

∫
M̂

a|∇̂φ|2dVĝ(∫
M̂

φ2∗dVĝ

)2/2∗
=

∫
M\{p}

aG2−2∗ |∇φ|2G2∗dVg(∫
M\{p}

φ2∗G2∗dVĝ

)2/2∗

=

∫
M\{p}

aG2|∇φ|2dVg(∫
M\{p}

(Gφ)2
∗
dVĝ

)2/2∗
,

(5.0.1)

where ∇̂ denotes the Levi-Civita connection of ĝ. Now note that

Qg(φG) =

∫
M\{p}

a|∇(φG)|2 + SG2φ2dVg(∫
M\{p}

(Gφ)2
∗
dVg

)2/2∗

=

∫
M\{p}

aG2|∇φ|2 + 2aφG⟨∇φ,∇G⟩+ aφ2⟨∇G,∇G⟩+ Sφ2G2dVg(∫
M\{p}

(Gφ)2
∗
dVg

)2/2∗

=

∫
M\{p}

aG2|∇φ|2 + a⟨∇(Gφ2),∇G⟩+ Sφ2G2dVg(∫
M\{p}

(Gφ)2
∗
dVg

)2/2∗

=

∫
M\{p}

aG2|∇φ|2 + Lg(Gφ2)GdVg(∫
M\{p}

(Gφ)2
∗
dVg

)2/2∗

=

∫
M\{p}

aG2|∇φ|2dVg(∫
M\{p}

(Gφ)2
∗
dVg

)2/2∗
,

where we have used the fact that φ ∈ C∞
c (M \ {p}) together with the fact that G is a multiple of the

Green function of Lg at p. Because G is a strictly positive, smooth function in M \ {p} we see that every

compactly supported, smooth function on M \ {p} can uniquely be written as Gφ, for some compactly

supported, smooth function ψ on M \ {p}. Therefore,

λ(M) = inf
φ∈C∞

c (M̂)
Qĝ(φ). (5.0.2)

52



So, using standard density arguments, we can conclude that

λ(M) = inf
φ∈H1(M̂)

φ̸=0

Qĝ(φ), (5.0.3)

and therefore, if we find a nonzero φ ∈ H1(M̂), such that Qĝ(φ) < λ(Sn), we can conclude that λ(M) <

λ(Sn).

As mentioned above the geometry of (M̂, ĝ) is close to the geometry of Rn, this, together with the

fact that, by construction, the scalar curvature of ĝ, is identically zero, should, in principle, make the

construction of the test function on M̂ to verify whether or not λ(M) < λ(Sn), simpler. This is, in fact, the

reason why we introduced the concept of a stereographic projection.

To construct the test function consider the functions uα defined in (2.1.2) on Rn and recall that

a∆uα = 4n(n − 1)u2
∗−1
α and λ(Sn) = 4n(n − 1)∥uα∥2

∗−2
2∗ . Now fix a large R > 0 and let ρ(z) = |z|, in

inverted conformal normal coordinates (extended to a smooth positive function on the whole of M̂ ) and

set M̂∞ = {ρ > R}. Define φα on M̂ by

φα(z) =

uα(z), ρ(z) ≥ R,

uα(R), ρ(z) ≤ R,

(5.0.4)

where α is much larger than R (we will only have to determine α in Chapter 6).

Before we proceed, we should justify the definition of φ. First, because we will be interested in

passing to the limit α → ∞ and uα is close to zero for large α inside a ball of radius R, the effect in

the Yamabe quotient of replacing uα with a constant inside a ball of radius R should be inconsequential.

Second, the reason why we set φ(z) = uα(R) inside the ball {ρ ≤ R} is to make sure that φ ∈ H1(M).

Because φα is radially symmetric, the behaviour of Qĝ(φα) as α→ ∞ should depend on the average

behaviour of ĝ over spheres of large radius. Therefore, we need to study the ĝ−volume of the spheres

{ρ = ρ0} (for large ρ0). Because we have a good knowledge of the volume of the Euclidean spheres

a good way to study the ĝ−volume of the spheres {ρ = ρ0} is to consider the ratio between the two

volumes.

To do this, we first give the geometric interpretation of the scalar curvature. Let (M, g) be a Rieman-

nian manifold and p ∈ M , and let {xi} be normal coordinates around a point p and r = |x|. The ratio

between the g−volume of the geodesic sphere Sr (small r) around p and the Euclidean volume of the

Euclidean sphere of radius r is given by the spherical density function

h(r) :=

∫
Sr

dω̃r
ωr

, (5.0.5)

where dω̃r is the induced volume form on Sr by dVg. Since the unit normal vector to Sr is N = gradr
|gradr| =
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1√
gij xixj

r2

gij x
i

r
∂
∂xj = 1√

grr
gij x

ixj

r2
∂
∂xj , we have

dω̃r = N⌞dVg = det(gij)
1/2(grr)−1/2gij

xj

r

∂

∂xi
⌞dx

= det(gij)
1/2(grr)−1/2gij

xj

r

xi

r

∂

∂r
⌞dx

= (det(gij)g
rr)1/2dωr,

where dωr denotes the Euclidean volume form of the sphere of radius r. Since grr = 1 in normal

coordinates at p, the expansion 4.1.19 yields

h(r) =

∫
Sr

(
1− 1

6
Rij(p)x

ixj +O(r3)

)
dωr
ωr

= 1− 1

6n
S(p)r2 +O(r3). (5.0.6)

Therefore, when the scalar curvature at p, S(p), is positive, the volumes of geodesic spheres grow slower

than the volumes of the Euclidean spheres, and they grow faster when S(p) < 0. So, we conclude that

the scalar curvature measures the difference in the rate of growth of volumes of geodesic spheres in

(M, g) when compared to the spheres in the usual Euclidean space Rn.

As mentioned above we need to study the ĝ−volume of the spheres {ρ = ρ0} (for large ρ0) on M̂ , so we

consider the same function h(ρ) for large values of ρ = |z| on the manifold (M̂, ĝ):

h(ρ) =
1

ωρ

∫
Sρ

dω̂ρ =
1

ωρ

∫
Sρ

(grr det(ĝij))
1/2

dωρ, (5.0.7)

where dω̂ρ is the volume form on Sρ induced by dVĝ. In inverted conformal normal coordinates {zi}, we

have ĝρρ = γ2−2∗ and det(ĝij) = γ
4n

n−2 (1 + ρ−N ). To see that ĝρρ = γ2−2∗ , first note that since ρ = r−1,

we have dρ = −ρ2dr, and therefore

ĝρρ = ĝ(dρ, dρ) = ρ4ĝ(dr, dr) = ρ4ĝrr.

Using Definition 4.2.3, we know that ĝ = G2∗−2g and hence

ĝrr = G2−2∗grr,

where grr = 1 because we are in conformal normal coordinates. Recalling that γ = rn−2G, we then

have

ĝρρ = ρ4G2−2∗ρ4+(n−2)(2−2∗)γ2−2∗ = γ2−2∗ .

Thus, (5.0.6) reduces to

h(ρ) = ω−1
ρ

∫
Sρ

γ1−2∗/2+2∗(1 +O(ρ−N ))1/2dωρ = ω−1
ρ

∫
Sρ

γ(2+2∗)/2(1 +O(ρ−N ))1/2dωρ. (5.0.8)
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The expansion of γ given by Theorem 4.2.7 gives an asymptotic expansion as ρ→ 0:

h(ρ) =


1 + µ

2−nρ
2−n +O′′(ρ1−n), if dimM = 3, 4, 5 or (M, g) is conformally flat around p,

1 + µ
4 ρ

−4 log(ρ) +O′′(ρ−4), if dimM = 6 and (M, g) is not conformally flat near p,

1 + µ
4 ρ

−4 +O′′(ρ−5), if dimM > 6 and (M, g) is not conformally flat near p,

(5.0.9)

where µ is defined for each dimension. We call the constant µ, the distortion coefficient of ĝ. The sign

of this constant will be of the uttermost importance when determining the values of Qĝ(φ) as is shown

below. Since the (n− 1)−form dωρ

ωρ
is homogeneous of degree zero (with respect to ρ),

a

2

∫
Sρ

∂ργ
dωρ
ωρ

=


µρ1−n +O′′(ρ2−n), if dimM = 3, 4, 5 or (M, g) is conformally flat nearp,

µρ−5 log(ρ) +O′′(ρ−5), if dimM = 6 and (M, g) is not conformally flat near p,

µρ−5 +O′′(ρ−6), if dimM > 6 and M is not conformally flat near p.

(5.0.10)

To see this, we differentiate h. But first note that we can ignore the term related to the determinant of

the metric in the definition of h due to the fact that we can absorb the error term on the right-hand side.

Indeed, we have

h′(ρ) =
a

2

∫
Sρ

γ2
∗/2∂ργ(1 +O(ρ−N ))1/2

dωρ
ωρ

+
1

2

∫
Sρ

γ(2
∗+2)/2 ∂ρ det(ĝij)

det(ĝij)

dωρ
ωρ

=
a

2

∫
Sρ

γ2
∗/2∂ργ

dωρ
ωρ

+O(ρ−N ),

because ∂ρ det(ĝij) = O(ρ−N−1) and (1 +O(ρ−N ))1/2 − 1 = O(ρ−N ). Using the expansion of γ given in

Theorem 4.2.7 we have in the three cases of said theorem

γ2
∗/2∂ργ =


∂ργ(1 +

µ
2−nρ

2−n +O′′(ρ1−n)),

∂ργ(1 +
µ
4 ρ

−4 log(ρ) +O′′(ρ−4)),

∂ργ(1 +
µ
4 ρ

−4 +O′′(ρ−5)),

=


∂ργ +O(ρ3−2n)

∂ργ +O(ρ−8)

∂ργ +O(ρ−9).

So, in the three cases of Theorem 4.2.7, we have

h′(ρ)− a

2

∫
Sρ

∂ργ
dωρ
ωρ

=


∂ργ(

µ
2−nρ

2−n +O′′(ρ1−n)),

∂ργ(
µ
4 ρ

−4 log(ρ) +O′′(ρ−4)),

∂ργ(
µ
4 ρ

−4 +O′′(ρ−5)).
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Taking into account the expansions of ∂ργ obtained by differentiating the expansions of γ we get

h′(ρ)− a

2

∫
Sρ

∂ργ
dωρ
ωρ

=


O(ρ3−2n),

O(ρ−8),

O(ρ−9)).

Hence, by differentiating the expansion of h we get (5.0.10). Using these estimates, we are able to prove

the following.

Proposition 5.0.1. Let φα be defined as in (5.0.4). There is a positive constant C such that

E(φα) ≤ λ(Sn)∥φα∥2L2∗ (M̂)
− Cµα2−n +O(α1−n), (5.0.11)

if dimM = 3, 4, 5 or (M, g) is conformally flat near p,

E(φα) ≤ λ(Sn)∥φα∥2L2∗ (M̂)
− Cµα−4 log(α) +O(α−4), (5.0.12)

if dimM = 6 and (M, g) is not conformally flat near p,

E(φα) < λ(Sn)∥φα∥2L2∗ (M̂)
− Cµα−4 +O(α−5), (5.0.13)

if dimM > 6 and (M, g) is not conformally flat near p.

Thus if µ > 0, φα can be chosen so that Qg(φα) < λ(Sn).

Proof. Recall that by definition ĝ = G2∗−2g, and hence the transformation law (A.0.20) yields

Ŝ = G1−2∗ (a∆gG+ SG) = 0, on M̂, (5.0.14)

where Ŝ denotes the scalar curvature of ĝ, because G is a multiple of the Green function for Lg. So the

energy E(φα) is∫
M̂

a|∇φα|2dVĝ =
∫
M̂∞

aĝρρ(∂ρφα)
2dVĝ =

∫
M̂∞

aγ2−2∗(∂ρuα)
2γ2

∗
(1 +O(ρ−N ))1/2dz

=

∫
M̂∞

a(∂ρuα)
2γ2(1 +O(ρ−N ))1/2dz

=

∫
M̂∞

a(∂ρuα)
2γ2dz +

∫
M̂∞

a(∂ρuα)
2γ2dzO(ρ−N )dz.

First note that the last integral is O(α−n):

∫
M̂∞

(∂ρuα)
2γ2dzρ−Ndz ≤ A0

∫ ∞

R

( ρ
α

)2( α

α2 + ρ2

)n
γ2ρ−N+n−1dρ

≤ A1α
−n
∫ ∞

R/α

ξ2

(1 + ξ2)n
dξ

≤ A2O(α−n),
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for some positive constants A0, A1, A2. Let AL denote the annulus {R ≤ ρ ≤ L}. Integration by parts

using the Euclidean Laplacian gives

∫
AL

a(∂ρuα)
2γ2dz =

∫
AL

a
∂zi

∂ρ

∂uα
∂zi

∂ρuαγ
2dz

= −a
∫
AL

∂

∂zi

(
∂zi

∂ρ

)
uα∂ρuαγ

2 +
∂zi

∂ρ

∂

∂zi
(∂ρuα)uαγ

2dz

− a

∫
AL

uα∂ρuα∂ρ(γ
2)dz − a

∫
SR∪SL

uα∂ρuαγ
2 ∂z

i

∂ρ
nidω,

where ni is the i−th component of the outward normal vector. Since ∂zi

∂ρ = zi

ρ , we get

∫
AL

a(∂ρuα)
2γ2dz = −a

∫
AL

n− 1

ρ
uα∂ρuαγ

2 + ∂ρρuαuαγ
2dz

− a

∫
AL

uα∂ρuα∂ρ(γ
2)dz − a

∫
SR∪SL

uα∂ρuαγ
2 z

i

ρ
nidω

= a

∫
AL

uα∆uαγ
2dz − a

∫
AL

uα∂ρuα∂ρ(γ
2)dz − a

∫
SR∪SL

uα∂ρuαγ
2 z

i

ρ
nidω.

(5.0.15)

Because ∂ρuα = (2 − n) ρα

(
α

α2+ρ2

)n/2
and the fact that γ is bounded , we have that the integral over

SL is O(L2−n) (for fixed α), thus is vanishes as L → ∞. In the same way, one sees that the integral

over SR is O(α−n). We can bound the first integral in (5.0.15) using Hölder’s inequality and the identity

∆0uα = n(n− 2)u2
∗−1
α we have∫

AL

auα∆uαγ
2dz = 4(n− 1)n

∫
AL

u2
∗−2
α (uαγ)

2dz

≤ 4(n− 1)n

(∫
AL

u2
∗

α dz

)1−2/2∗ (∫
AL

u2
∗

α γ
2∗dz

)2/2∗

≤ 4(n− 1)n∥uα∥2
∗−2

2∗

(∫
M̂

φ2∗

α dVĝ

)2/2∗

+
A

RN−n+1
α2−n

= λ(Sn)∥φα∥22∗ +
A

RN−n+1
α2−n.

To see how the α2−n term appears we have to estimate the difference between
(∫

AL

u2
∗

α dVĝ

)2/2∗

and(∫
AL

u2
∗

α γ
2∗dz

)2/2∗

, which we can do using the triangle inequality:

(∫
AL

u2
∗

α γ
2∗dz

)2/2∗

≤
(∫

AL

u2
∗

α dVĝ

)2/2∗

+

(∫
AL

u2
∗

α γ
2∗O(ρ−N )dz

)2/2∗

≤
(∫

M̂

u2
∗

α dVĝ

)2/2∗

+

(∫
AL

u2
∗

α γ
2∗O(ρ−N )dz

)2/2∗

,
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using Euclidean polar coordinates we can estimate the last term:

(∫
AL

u2
∗

α γ
2∗O(ρ−N )dz

)2/2∗

≤ A0

(∫ ∞

R

αn

(α2 + ρ2)n
ρ−N+n−1dρ

)2/2∗

≤ A1α
−n
(∫ ∞

0

1

(1 + ρ2)n
dρ

)2/2∗

= A2α
−n,

for some positive constants A0, A1, A2. In the limit L→ ∞ the second term in (5.0.15) becomes

−
∫ ∞

R

auα∂ρuα

∫
Sρ

∂ρ(γ
2)dωρdρ. (5.0.16)

If dimM = 3, 4, 5 or M is conformally flat near p, (5.0.10) yields

a

∫
Sρ

∂ρ(γ
2)dωρ = 4(h′(ρ) +O(ρ3−2n))ωρ = −4(µρ1−n +O(ρ2−n))ωρ. (5.0.17)

When dimM > 6 and M is not conformally flat near p we get

a

∫
Sρ

∂ρ(γ
2)dωρ = 4(h′(ρ) +O(ρ−9))ωρ = −4(µρ−5 +O(ρ−6))ωρ. (5.0.18)

To arrive at (5.0.11) and (5.0.13) we need to estimate
∫ ∞

R

ρ−k
(

α

α2 + ρ2

)n−1

ρn−1dρ, where 2 − n <

k < n. Proceeding as in the proof of Lemma 2.1.4 the change of variables σ = ρ/α gives

∫ ∞

R

ρ−k
(

α

α2 + ρ2

)n−1

ρn−1dρ =

∫ ∞

R/α

α1−k σn−k−1

(1 + σ2)n−1
dσ,

which is clearly bounded above and below by multiples of α−k+1. Thus the second term in (5.0.15) is

−4

∫ ∞

R

ρα−1

(
α

α2 + ρ2

)n−1

(µρ1−n +O(ρ2−n))ωρdρ ≤ −Cµα2−n +O(α1−n),

when dimM = 3, 4, 5 or M is conformally flat near p (and (5.0.11) is proven),

−4

∫ ∞

R

ρα−1

(
α

α2 + ρ2

)n−1

(µρ−5 +O(ρ−6))ωρdρ ≤ −Cµα−4 +O(α−5),

when dimM > 6 and M is not conformally flat near p (and (5.0.13) is proven). Finally, when dimM = 6

and M is not conformally flat near p, we estimate
∫ ∞

R

ρ−4α−1 log(ρ)

(
α

α2 + ρ2

)5

ρ5dρ. Performing the

change of variables σ = ρ/α gives

∫ ∞

R

ρ−4α−1 log(ρ)

(
α

α2 + ρ2

)5

ρ5dρ =

∫ ∞

R/α

α−4 log(ασ)
1

(1 + σ2)5
dσ,

which is clearly bounded from above and below by multiples of α−4 log(α). This gives (5.0.12).

Estimates (5.0.11)-(5.0.13) reduce the Yamabe problem in the case λ(M) > 0 to the problem of
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determining the sign of µ. Indeed, if µ > 0 the estimates (5.0.11)-(5.0.12) together (5.0.3) with imply that

λ(M) < λ(Sn). So, the following is proven:

Theorem 5.0.2. Let (M, g) be a compact, connected Riemannian manifold of dimension dimM ≥ 3

with λ(M) > 0. Suppose that there is p ∈ M for which there is a stereographic projection of M from p,

(M̂, ĝ), with positive distortion coefficient µ, then λ(M) < λ(Sn).

Using the expansions of γ given in Theorem 4.2.7 we can explicitly determine the value of the distor-

tion coefficient, µ, in terms of the Weyl tensor at p and the scalar curvature of g at p, when dimM ≥ 6

and (M, g) is not conformally flat near p. However, when (M, g) has dimension 3, 4, 5 or is conformally

flat near p the situation is not so simple. Indeed, in this case, we will, in Chapter 6, be able to relate µ

with a global invariant of the Riemannian manifold (M̂, ĝ) called ”mass”.
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Chapter 6

The Positive Mass Theorem and the

Solution of the Yamabe Problem

This chapter aims to present the final solution to the Yamabe problem. For that, we need to use the

celebrated Positive Mass Theorem. The contents of this chapter are the trimmed-down version of the

contents of sections 8, 9, 10 and 11 of [13], with the main difference being that in [13], Lee and Parker,

provide a sketch of the proof of the positive mass theorem and the solution of the Yamabe problem,

whilst in this text the main focus is solely the solution of the Yamabe problem.

We now introduce the notion of mass of an asymptotically flat manifold as presented in [13].

Definition 6.0.1 (Lee, Parker [13]). Let (N, g) be an asymptotically flat manifold with asymptotic coordi-

nates {zi}. The mass of (N.g) is defined as:

m(g) = lim
R→∞

ω−1
n−1

∫
SR

ν ⌟ dz, (6.0.1)

when the limit exists, where ν is the mass-density vector field defined on N∞:

ν = (∂igij − ∂jgii)∂j .

An immediate question is whether or not the mass of an asymptotically flat manifold is well-defined,

i.e., if the limit (6.0.1) (when it exists) depends on the choice of asymptotic coordinates {zi}. In the

cases that we are interested the answer to this question is that it does not. To see this, first, we need to

introduce a ”good” class of metrics. For τ > n−2
2 , we define Mτ as set of all smooth metrics on N such

that, in some asymptotic coordinates, we have

gij − δij ∈ C1,α
−τ (N∞), Sg ∈ L1(N),

where C1,α
−τ (N∞) is the Hölder space as defined in [13] and Sg denotes the scalar curvature of g. In

asymptotic coordinates, {zi}, on N∞:
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Sg = gjk
(
∂iΓ

i
jk − ∂kΓ

i
ij + ΓiilΓ

l
jk − ΓiklΓ

l
ij

)
= ∂j(∂igij − ∂jgii) +O(ρ−2τ−2). (6.0.2)

Now let (M, g) be a compact, connected Riemannian manifold that is either of dimension 3, 4, 5 or

is locally conformally flat. Consider the stereographic projection (M̂, ĝ) of (M, g) from a point p. Using

inverted conformal normal coordinates around p, Theorem 4.2.7 together with the fact that the scalar

curvature of ĝ vanishes identically (see (5.0.14)) implies that ĝ ∈ Mτ for some n−2
2 < τ < n− 2. In this

setting, the mass of M̂ exists and is finite.

Lemma 6.0.2. Let (M, g) be a compact, connected Riemannian manifold that either has dimensions 3,

4 or 5 or is conformally flat. Let (M̂, ĝ) be the stereographic projection of (M, g) from p, as defined in

Definition 4.2.3. Then m(ĝ) is finite.

Proof. Let η be a smooth cutoff function which is supported in M̂∞ and identically one for large ρ. Then

by the divergence theorem,

m(ĝ) = lim
R→∞

ω−1
n−1

∫
SR

ν ⌟ dz = lim
R→∞

ω−1
n−1

∫
SR

η⟨ν, n⟩dωR

= lim
R→∞

ω−1
n−1

∫
BR

η div ν +∇η · νdz,
(6.0.3)

where BR is the open ball of radius R with centre at the origin. Since 0 = Ŝ = −div ν + O(ρ−2τ−2), we

have that η div ν ∈ L1(M̂). Adding to this the fact that ∇η · ν ∈ C0,α
c (M̂) ⊂ L1(M̂), we can conclude that

the limit in (6.0.3) exists and is finite.

In Chapters 3 and 4 we worked with conformal normal coordinates and inverted conformal normal

coordinates without ever fixing coordinates, so it is crucial that the mass of (M̂, ĝ) does not depend

on the choice of inverted conformal normal coordinates. Indeed, this is the case as the next theorem

shows.

Theorem 6.0.3. The mass of (M̂, ĝ) depends only on the metric ĝ.

Proof. See [5].

Proposition 6.0.4. Let (M, g) be a compact, connected Riemannian manifold of dimension dimM ≥ 3,

(M̂, ĝ) be the stereographic projection of (M, g) from p ∈ M , and µ be the distortion coefficient as

defined in (5.0.9). If dimM < 6 or M is conformally flat near p, then µ = 1
2m(ĝ).

Proof. On the sphere Sρ, we have ∂j ⌟ dz = ∂zj

∂ρ ∂ρ ⌟ dz = ρ−1zjdωρ = ρ−2zjzk∂k ⌟ dz. Therefore, the

mass formula becomes

m(ĝ) = lim
ρ→∞

ω−1
n−1

∫
Sρ

(ρ−2zjzk∂iĝij − ∂kĝii)∂k ⌟ dz. (6.0.4)

Now observe that

ĝρρ = ĝ(∂ρ, ∂ρ) = ĝ

(
∂zk

∂ρ
∂k,

∂zj

∂ρ
∂k

)
= ρ−2zkzj ĝkj (6.0.5)
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and

∂ρĝρρ = ρ−3zizjzk∂iĝkj . (6.0.6)

Moreover, the (n− 2)−form η = (zjzkĝij)∂i ⌟ ∂k ⌟ dz satisfies

dη = (zjzk∂iĝij − zjzi∂iĝkj + zkĝii − nzj ĝkj)∂k ⌟ dz. (6.0.7)

And so,

m(ĝ) = lim
ρ→∞

ω−1
n−1

∫
Sρ

ρ−2dη +

∫
Sρ

(
ρ−2zjziĝkj − ρ−2zkĝii + nρ−2zj ĝkj − ∂kĝii

)
∂k ⌟ dz

= lim
ρ→∞

ω−1
n−1

∫
Sρ

(
ρ−3zkzjziĝkj − ρ−3(zk)2ĝii + nρ−3zkzj ĝkj − zk∂kĝii

)
∂ρ ⌟ dz

= lim
ρ→∞

ω−1
n−1

∫
Sρ

∂ρ(ĝρρ − ĝii + ρ−1(nĝρρ − ĝii)dωρ,

(6.0.8)

where we have applied Stokes’ Theorem to make the term ρ−2dη disappear.

Using inverted conformal normal coordinates, we can simplify this expression. Since ĝρρ = γ2
∗−2

and det ĝ = γ
4n

n−2 (1 +O(ρ−N )) = 1 +O(ρ2−n) (where N is large positive integer). Thus

n∂ρĝρρ = n(2∗ − 2)γ2
∗−3∂ργ = γ2

∗−2∂ρ(log(det ĝ)) +O(ρ−N )

= γ2
∗−2∂ρ(tr log(ĝ)) = γ2

∗−2 tr(ĝ−1∂ρĝ) = γ2
∗−2ĝij∂ρĝij

= gij∂ρĝij = ∂ρĝii + (gij − δij)∂ρĝρρ,

which using (4.1.22) and Theorem (6.0.8) becomes

n∂ρĝρρ = ∂ρĝii +O(ρ−n−1).

So, by integrating along rays from infinity and noting that nĝρρ = n = ĝii at infinity (by the expansion in

Theorem 4.2.7), we find that nĝρρ = ĝii +O(ρ−n). Then (6.0.8) becomes

m(ĝ) = lim
ρ→∞

ω−1
n−1

∫
Sρ

∂ρ(ĝρρ − ĝii)dωρ = lim
ρ→∞

ω−1
n−1

∫
Sρ

a∂ργdωρ = 2µ,

by (5.0.10).

So determining the sign of the distortion coefficient, µ is equivalent to determining the sign of the

mass of the asymptotically flat manifold (M̂, ĝ) when (M, g) is in the conditions of the previous proposi-

tion. To solve the problem of determining the sign of the mass of (M̂, ĝ), we have the following theorem,

originally proved by Yau and Schoen in [17].

Theorem 6.0.5 (Positive Mass Theorem). Let (N, g) be an asymptotically flat manifold of dimension

n ≥ 3 with metric g ∈ Mτ , with τ > (n− 2)/2, and nonnegative scalar curvature. Then its mass m(g) is

nonnegative, with m(g) = 0 if and only if (N, g) is isometric to Rn with its Euclidean metric.

Using this theorem we can finally present a solution to the Yamabe problem.
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Theorem 6.0.6. Every compact, connected Riemannian manifold (M, g) of dimension n ≥ 3, admits a

metric g̃ conformal to g with scalar curvature S̃ = λ(M).

Proof. If (M, g) is in the conformal class of the standard sphere, Theorem 2.2.2 together with Theorem

3.1.7 imply the result. If dimM ≥ 6 and (M, g) is not locally conformally flat (in particular, (M, g) is not in

the conformal class of the standard sphere), then Theorem 4.1.20 and the results of Chapter 3 imply the

result. If dimM < 6 or (M, g) is locally conformally flat, Lemma 6.0.2 and the Positive Mass Theorem

show that µ > 0, unless (M̂, ĝ) is isometric to Rn endowed with the Euclidean metric. In the first case,

the results of chapter 3 together with Theorem 5.0.2 yield the result. In the second case, we want to

show that M is conformal to the standard sphere. To that end, let β denote the isometry from (M̂, ĝ) onto

Rn (endowed with the standard Euclidean metric). Consider the inverse of the standard stereographic

projection from Sn \ {P} onto Rn (where P denotes the north pole). Let Φ : M̂ → Sn \ {P} denote the

composition of the two maps. Using this map we can not only transport the round metric in the sphere,

g, to M̂ but we can also conclude, by Lemma 2.1.1 that under the isometry between (M̂, ĝ) and Rn we

have:
4

(1 + ρ2)2
G2∗−2g = g, in Rn,

in coordinates {zi}, where ρ = |z| is the Euclidean distance. So, we see that the singularity of G2∗−2 at

infinity is cancelled by the decay of 4
(1+ρ2)2 at infinity. Therefore, we can conclude that the metric Φ∗g

can be extended to the whole of M and is conformal to g. Since M is the one-point compactification of

Rn, it is simply connected, and because g has constant sectional curvature equal to 1, we conclude via

the Killing-Hopf Theorem that (M,Φ∗g) is isometric to the standard sphere, hence (M, g) is conformal

to the standard sphere.
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Appendix A

Review of Riemannian Geometry

The exposition that follows closely the one in Section 2 of [13] with a few extra results for better

comprehension of this dissertation. All the results in this Appendix can be found in one of the following

references: [4,11–13,15].

We start with some basic definitions.

Definition A.0.1. A Riemannian manifold (M, g) of dimension n is a C∞−differentiable manifold M of

dimension n equipped with a metric tensor gp on each tangent space TpM such that the map p → gp is

smooth, that is, for any two smooth vector fields X,Y ∈ X(M), the function p→ gp(X|p, Y |p) is smooth.

Throughout this appendix, M will be a Riemannian manifold g will denote a metric on M . In local

coordinates (x1, ..., xn) the metric can be written as

g = gijdx
i ⊗ dxj ,

where we employ the Einstein summation convention. If gij are the components of the metric tensor

with respect to a coordinate system (xi), the components of the ”inverse metric tensor” are denoted by

gij . The components of the metric, gij , and its inverse, gij are used to raise and lower indices in tensors.

For example, if T = Tijdx
i ⊗ dxj is a 2− tensor, then T lk = gilTik, where the Einstein summation

convention is employed. Furthermore, we can extend the metric tensor to an inner product between any

two tensors of the same type: if T, F are two (k, l)-tensor fields in M , written in local coordinates (xi) as

T = T j1,...,jli1,...,ik
∂

∂xi1
⊗ ....⊗ ∂

∂xik
⊗ dxj1 ⊗ dxjl and F = F j1,...,jli1,...,ik

∂
∂xi1

⊗ ....⊗ ∂
∂xik

⊗ dxj1 ⊗ dxjl then

⟨T, F ⟩ := gi1s1 ...gikskgj1r1 ...gjkrkT
j1,...,jl
i1,...,ik

F r1,...,rls1,...,sk

Remark A.0.2. Unlike in a general manifold where in order for integration to be well-defined we need the

manifold to be orientable, in a Riemannian manifold we do not need orientability to integrate, and this is

due to the Riemannian volume form (also called Riemannian density). In what, the Riemannian volume

form of a Riemannian manifold (M, g) will be denoted by dVg, in local coordinates, dVg =
√

det(gij)dx.
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Definition A.0.3. A connection on M is a smooth map ∇ : X(M)×X(M) → X(M) such that ∀X,Y, Z ∈

X(M) and f ∈ C∞(M):

1. ∇X(fY ) = (X · f)Y + f∇XY ;

2. ∇fXY = f∇XY ;

3. ∇X(Y + Z) = ∇XY +∇XZ;

4. ∇X+Y Z = ∇XZ +∇Y Z.

For a local coordinate system (xi), there are unique smooth functions Γkij , i, j, k = 1, ..., n such

that ∇ ∂

∂xi

∂
∂xj = Γkij

∂
∂xk , called the Christoffel symbols of the connection ∇ for the coordinate system

(xi) . We can extend the concept of covariant derivative to general tensors as follows: for functions,

∇Xf = X(f), ∇X preserves the type of tensor, ∇X commutes with contractions and satisfies the

Leibniz rule (∇X(u⊗ v) = (∇Xu)⊗ v+ u⊗ (∇v), u and v are tensor fields). If T is a (k,m)−tensor field,

written in local coordinates (xi) as T = T j1,...,jli1,...,ik
∂

∂xi1
⊗ ....⊗ ∂

∂xik
⊗ dxj1 ⊗ dxjl , then for every vector field

X ∈ X(M) we have

∇XT =

n∑
i1,...,ik=1
j1,...,jm=1

X · T j1,...,jmi1,...,ik
dxi1 ⊗ ...⊗ dxik ⊗ ∂

∂xj1
⊗ ...⊗ ∂

∂xjm

−
n∑

i1,...,ik=1
j1,...,jm=1
r,s=1

(
Γsri1X

rT j1,...,jms,i2,...,ik
+ ΓsrikX

rT j1,...,jmi1,...,ik−1,s

)
dxi1 ⊗ ...⊗ dxik ⊗ ∂

∂xj1
⊗ ...⊗ ∂

∂xjm

+

n∑
i1,...,ik=1
j1,...,jm=1
r,s=1

(
Γj1rsX

rT s,j2,...,jmi1,...,ik
+ Γj1rsX

rT
j1,...,jm−1,s
i1,...,ik

)
dxi1 ⊗ ...⊗ dxik ⊗ ∂

∂xj1
⊗ ...⊗ ∂

∂xjm

(A.0.1)

Before we proceed, a word on notation is necessary. If T is a tensor, the m − th covariant derivative

of T is denoted by ∇mT , and if the components of T are denoted by T j1,...,jmi1,...,ik
, then the components

of ∇mT are denoted by T j1,...,jmi1,...,ik;s1,...,sm
. Finally, note that if T is a (k, l)−tensor field, then ∇mT is a

(k, l +m)−tensor field and ∇m
X1,...,Xm

T = ∇mT (..., X1, ..., Xm), for all vector fields X1, ..., Xm.

Definition A.0.4. The torsion of a connection ∇ is the map T : X(M) × X(M) → X(M) defined by

T (X,Y ) = ∇XY −DYX − [X,Y ]. The connection is said to be torsion-free if T ≡ 0.

It is easy to see that T is indeed a tensor and that in local coordinates (xi) we have Tij = T ( ∂
∂xi ,

∂
∂xj ) =(

Γkij − Γkji
)

∂
∂xk , and so we can conclude that a connection is torsion-free if and only if Γkij = Γkji for all

i, j, k = 1, ..., n.

Definition A.0.5. A connection ∇ is said to be compatible with the metric g if

X · ⟨Y, Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩,

for all X,Y, Z ∈ X(M).
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Theorem A.0.6 (Levi-Civita). There is a unique connection ∇ on M which is torsion-free and compatible

with g, for which, in local coordinates (xi), the Christoffel symbols are

Γkij =
1

2
gkl
(
∂gil
∂xj

+
∂gjl
∂xi

− ∂gij
∂xl

)
. (A.0.2)

Definition A.0.7. Given a connection ∇ on M the curvature tensor of the connection is the map R :

X(M)× X(M)× X(M) → X(M) given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

for all X,Y, Z ∈ X(M). In local coordinates (xi), the curvature tensor can be written as

R =

n∑
i,j,k,l=1

Rlijkdx
i ⊗ dxj ⊗ dxk ⊗ ∂

∂xl
.

Direct computation shows that

Rlijk =
∂Γljk
∂xi

− ∂Γlik
∂xj

+

n∑
m=1

ΓmjkΓ
l
im − ΓmikΓ

l
jm.

We further define the Riemann curvature tensor as the (0, 4)−tensor field given by

Rm(X,Y, Z,W ) = ⟨R(X,Y )Z,W ⟩,

for all smooth vector fields X,Y, Z,W ∈ X(M). In local coordinates, it takes the form

Rm =

n∑
i,j,k,l=1

Rijkldx
i ⊗ dxj ⊗ dxk ⊗ dxl,

where Rijkl = glmR
m
ijk.

Proposition A.0.8 (Symmetries of the Riemann Curvature Tensor). Let (M, g) be a Riemannian mani-

fold. The Riemann curvature tensor has the following symmetries for all vector fields X,Y, Z,W :

(a) Rm(X,Y, Z,W ) = −Rm(Y,X,Z,W ),

(b) Rm(X,Y, Z,W ) = −Rm(X,Y,W,Z),

(c) Rm(X,Y, Z,W ) = Rm(Z,W,X, Y ),

(d) (The first Bianchi identity) Rm(X,Y, Z,W ) +Rm(Y,Z,X,W ) +Rm(Z,X, Y,W ).

In local coordinates, components wise, these symmetries take the form:

(a’) Rijkl = −Rjikl,

(b’) Rijkl = −Rijlk,

(c’) Rijkl = Rklij ,
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(d’) Rijkl +Rjkil +Rkijl = 0.

Proposition A.0.9 (Second Bianchi identity). The covariant derivative of the Riemann curvature tensor

satisfies the following identity:

∇Rm(X,Y, Z, V,W ) +∇Rm(X,Y, V,W,Z) +∇Rm(X,Y,W,Z, V ) = 0, (A.0.3)

or, in components,

Rijkl;m +Rijlm;k +Rijmk;l = 0. (A.0.4)

Given vector fields X,Y , let R(X,Y )∗ : T ∗M → T ∗M denote the dual map to R(X,Y ), defined by

(R(X,Y )∗η)(Z) = η(R(X,Y )Z).

Theorem A.0.10 (Ricci Identities). On a Riemannian manifold M , the second covariant derivatives of

vector and tensor fields satisfy the following identities.

If Z is a vector field,

∇2
X,Y Z −∇2

X,Y Z = R(X,Y )Z. (A.0.5)

If η is a 1−form,

∇2
X,Y η −∇2

X,Y η = −R(X,Y )∗η. (A.0.6)

And if β is a smooth (k, l)−tensor field,

(∇2
X,Y β −∇2

X,Y β)(ω
1, ..., ωk, V1, ..., Vl) = β(R(X,Y )∗ω1, ω2, ..., ωk, V1, ..., Vl) + ...

+ β(ω1, ..., R(X,Y )∗ωk, V1, ..., Vl)

− β(ω1, ..., ωk, R(X,Y )V1, ..., Vl)− ...

− β(ω1, ..., ωk, V1, ..., R(X,Y )Vl),

(A.0.7)

For all covectors fields ωi and vector fields Vj . In terms of any local frame, the component versions of

these formulas read

Zi;pq − Ziqp = −RipqmZm, (A.0.8)

ηj;pq − ηj;qp = Rmpqjηm, (A.0.9)

βi1,...,ikj1,...,jl;pq
− βi1,...,ikj1,...,jl;qp

= −Ri1pqmβ
m,i2,...,ik
j1,...,jl

−Rikpqmβ
i1,...,ik−1,m
j1,...,jl

+Rmpqj1β
i1,...,ik
m,j2...,jl

+Rmpqjlβ
i1,...,ik
j1,...,jl−1,m

.
(A.0.10)

Definition A.0.11. Let (M, g) be a Riemannian manifold. We define the Ricci curvature or Ricci tensor,

Rc, as the covariant 2−tensor field given as the trace of the curvature tensor on its first and last indices.

Rc(X,Y ) = tr(Z → R(Z,X)Y ),∀X,Y ∈ X(M).

Therefore, in local coordinates,

Rc =

n∑
ij=1

Rijdx
i ⊗ dxj ,
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where Rij = Rkkij . Also define the scalar curvature of (M, g) as the trace of the Ricci tensor,

S = trgRc = Rii = gijRij .

Finally, define the traceless Ricci tensor of g as the symmetric 2−tensor
◦
Rc = Rc− S

ng.

A Riemannian manifold whose Ricci tensor is a scalar multiple of the metric is said to be Einstein. It

is easy to see that a Riemannian manifold is Einstein if and only if, its traceless Ricci tensor vanishes

identically.

If T is a smooth 2−tensor field on a Riemannian manifold, we define the exterior covariant derivative

of T to be the 3−tensor field DT defined by

(DT )(X,Y, Z) = −(∇T )(X,Y, Z) + (∇T )(X,Z, Y ), (A.0.11)

components wise this definition translates to:

(DT )ijk = −Tij;k + Tik;j .

Remark A.0.12. This operator is a generalization of the ordinary exterior derivative of a 1−form, which

can be expressed as (dη)(X,Y ) = −(∇η)(X,Y ) + (∇η)(Y,X).

Proposition A.0.13 (Contracted Bianchi identities). Let (M, g) be a Riemannian manifold. The covariant

derivatives of the Riemann, Ricci, and scalar curvatures of g satisfy the following identities:

trg(∇Rm) = −D(Ric), (A.0.12)

trg(∇Ric) =
1

2
dS, (A.0.13)

where the trace, in each case, is on the first and last indices. In components, this is

Riijkl; = Rjk;l −Rjl;k, (A.0.14)

R i
il; =

1

2
S;l. (A.0.15)

Proposition A.0.14 (Schur’s Lemma). Suppose (M, g) is a connected Riemannian manifold of dimen-

sion n ≥ 3 whose Ricci tensor satisfies Rc = fg for some smooth real-valued function. Then, f is

constant, satisfies f = 1
nS and (M, g) is Einstein.

Proof. For a proof of this fact see Proposition 7.19 in [12].

Definition A.0.15. Let (M, g) be a Riemannian manifold. A normal coordinate system at P ∈ M is

a local coordinate system (U, (x1, ..., xn)), for which the components of the metric tensor at P satisfy:

gij(P ) = δij and ∂gij
∂xk (P ) = 0, for all i, j, k. Note that the condition on the partial derivatives of the

components of the metric is equivalent to all Christoffel symbols with respect to normal coordinates

being zero.
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Proposition A.0.16. Let (M, g) be a Riemannian manifold. At each point p ∈ M , there exists a normal

coordinate system.

Definition A.0.17. Let (M, g) be a Riemannian manifold and f a smooth function on M . We define the

Laplace-Beltrami operator, ∆g, by setting ∆gf = −trg∇df (∇df is the second covariant derivative of f ,

also called the Hessian of f ). In local coordinates:

∇df =

(
∂2f

∂xi∂xj
−
∑
k

Γkij
∂f

∂xk

)
dxi ⊗ dxj

and so,

∆gf = −gij ∂2f

∂xi∂xj
+
∑
k

Γkij
∂f

∂xk
gij .

Another way to define the Laplace-Beltrami operator is with the divergence operator, ∇∗. The diver-

gence operator is the formal adjoint of ∇, given on 1−forms by ∇∗ω = −ωii = −ωi;jgij . On a compact

Riemannian manifold (M, g) with boundary, the divergence theorem holds:

∫
M

∇∗ωdVg = −
∫
∂M

ω(N)dVg̃, (A.0.16)

where g̃ is the induced metric on ∂M and N is the outward unit normal. (When M is oriented this is

just Stokes’ Theorem). Furthermore, on a compact manifold without boundary, the integration by parts

formula holds: ∫
M

⟨∇u,∇v⟩dVg =
∫
M

v∆udVg.

Lemma A.0.18 (Transformation laws). Let (M, g) be a Riemannian manifold and g̃ metric on M confor-

mal to g, given by g̃ = e2fg for some f ∈ C∞(M). Let S̃, R̃c denote the scalar curvature and Ricci tensor

of (M, g̃), respectively. Then

R̃ij = Rij − (n− 2)(Hf )ij + (n− 2)(df ⊗ df)ij + (∆f − (n− 2)∥df∥2)gij , (A.0.17)

and

S̃ = e−2f (S + 2(n− 1)∆f − (n− 1)(n− 2)∥df∥2), (A.0.18)

where Hf denotes the hessian of f .

The transformation formula of the scalar curvature can be significantly simplified id we make the

substitution φp−2 = e2f , A.0.18 becomes

S̃ = φ2−p(S − 4
n− 1

φ(n− 2)
∆φ) ⇐⇒ a∆φ+ Sφ = S̃φ2∗−1. (A.0.19)

The operator Lg := a∆g+S is usually called the conformal Laplacian of (M, g). It is conformally invariant

in the sense that if g̃ = φ2∗−2g is a conformal metric to g, and Lg̃ is defined similarly with respect to g̃,
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then computing ∆g̃ in terms of ∆g and using the transformation laws for scalar curvature, we find that

Lg̃(φ−1u) = φ1−2∗Lgu. (A.0.20)

Definition A.0.19. Given two 2−tensor fields T, L on M define the Kulkarni-Nomizu product of T and L

by the formula

T ◦L(X,Y, Z,W ) := T (X,W )L(Y, Z)+T (Y,Z)L(X,W )−T (X,Z)L(Y,W )+T (Y,W )L(X,Z), (A.0.21)

where X,Y, Z,W are vector fields in M .

Definition A.0.20. Let (M, g) be a Riemannian manifold. The Weyl tensor is defined as

W = Rm− 1

n− 2
Rc ◦ g + S

2(n− 1)(n− 2)
g ◦ g, (A.0.22)

in terms of components,

Wijkl = Rijkl −
1

n− 2
(Rikgjl +Rjlgik −Rilgjk −Rjkgil)

S

2(n− 1)(n− 2)
(gik)gjl − gjlgik).

A manifold is said to be locally conformally flat if it is locally conformal to the Euclidean space Rn

endowed with the standard Euclidean metric.

Theorem A.0.21 (Weyl-Schouten). Suppose (M, g) is a Riemannian manifold of dimension n ≥ 4,

then (M, g) is locally conformally flat if and only if the Weyl tensor vanishes identically. Furthermore, if

dimM = 3 and (M, g) is locally conformally flat, then the Weyl tensor also vanishes identically.

The previous theorem is not presented in its full generality so as not to make this exposition immea-

surably dense. To see the previous theorem in its full generality the reader may consult Theorem 7.37

in [12].

Theorem A.0.22 (Killing-Hopf). Let (M, g) be a simply connected, geodesically complete n−dimensional

(n ≥ 2)Riemannian manifold, with constant sectional curvature K, then (M, g) is isometric to one of the

model spaces Sn (if K > 0), Rn (if K = 0), Hn (if K < 0)

Proof. See Theorem 12.4 in [12].
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Appendix B

Review of Analysis and Partial

Differential Equations in Riemannian

Manifolds

The exposition that follows closely follows the one in Section 2 of [13] with a few extra results for com-

pleteness’ sake. The aim of what follows is to present all the results used throughout the dissertation.

All the results may be found in [4,8,10,13]. We start with a few basic definitions.

Definition B.0.1. For q ≥ 1, the space Lq(M) is the set of locally integrable functions on (M, g) for

which the Lq norm

∥u∥q :=
(∫

M

|u|qdVg
)1/q

is finite.

Definition B.0.2. Consider the space Ck,p(M) of C∞(M) functions such that |∇lφ| ∈ Lp(M) for all

0 ≤ l ≤ k, where k, l are integers and p ≥ 1. The Sobolev space W k,q(M) is defined as the completion

of Ck,q(M) with respect to the norm

∥u∥Wk,q(M) :=

k∑
l=0

∥∇lu∥q,

and the Sobolev space W k,q
0 (M) as the closure of C∞

c (M) in W k,q(M).

Note that when M is complete, C∞
c (M) is dense in W k,q(M).

Proposition B.0.3. For any k integer, Hk(M) := W k,2(M) is an Hilbert space when equipped with the

equivalent norm

∥u∥ =

√√√√ k∑
l=0

∫
M

|∇lu|2dVg.
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The inner product ⟨·, ·⟩Hk associated to ∥ · ∥ is defined by

⟨u, v⟩Hk =

k∑
l=0

∫
M

⟨∇lu,∇lv⟩dVg,

where the inner product inside the integrals is the inner product of tensors with respect to g.

If M is a compact manifold, endowed with two metric tensors g and g̃, it is not hard to see that there

is C > 1 such that
1

C
g ≤ g̃ ≤ Cg,

on M , where the inequalities are to be understood in the sense of bilinear forms. This leads to the

following:

Proposition B.0.4. If M is compact, W k,q(M) does not depend on the metric.

Definition B.0.5. The space Ck(M) is the set of k times continuously differentiable functions on M , for

which the norm

∥u∥Ck :=

k∑
l=0

sup
M

|∇lu|

is finite, where |∇lu| is the norm induced by the inner product of two tensor fields of the same type as

defined in Appendix A. The Hölder space Ck,α(M) is defined for 0 < α < 1 as the set of functions

u ∈ Ck(M) for which the norm

∥u∥Ck,α = ∥u∥Ck + sup
x,y

|∇ku(x)−∇ku(y)|
|x− y|α

is finite, where the supremum is over all x ̸= y such that y is contained in normal coordinate neighbour-

hood of x, and ∇ku(y) is taken to mean the tensor at x obtained by parallel transport along the radial

geodesic from x to y.

There is a relation between these spaces:

Theorem B.0.6 (Sobolev Embedding theorems for Rn). (a) Suppose 1
r = 1

q − k
n . Then W k,q(Rn) is

continuously embedded in Lr(Rn). In particular, for q = 2, k = 1, r = p = 2n
n−2 , we have the

following Sobolev inequality:

∥φ∥2p ≤ σn

∫
Rn

|∇φ|2dx, φ ∈ H1(Rn). (B.0.1)

We call the smallest constant σn for which the above inequality is valid the n−dimensional Sobolev

constant.

(b) Suppose 0 < α < 1, and 1
q ≤ k−α

n . Then W k,q(Rn) is continuously embedded in Cα(Rn).

One of the advantages of working on compact manifolds is that we can cover the manifold with a

finite number of small coordinate patches, apply the known theorems in Euclidean spaces and sum
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the results using partitions of unity and obtain similar results in the context of the manifold. Using this

method we can arrive at the following theorem.

Theorem B.0.7 (Sobolev Embedding Theorems for Compact Manifolds). Let (M, g) is a compact Rie-

mannian manifold of dimension n.

(a) If 1
r ≤ 1

q −
k
n , then W k,q(M) is continuously embedded in Lr(M).

(b) (Rellich-Kondrakov Theorem) Suppose 1
r < 1

q − k
n . Then the inclusion W k,q(M) ⊂ Lr(M) is a

compact operator.

(c) Suppose 0 < α < 1, and 1
q ≤ k−α

n . Then W k,q(M) is continuously embedded in Cα(M).

One may wonder whether the Sobolev inequality still holds in compact manifolds and if the best

Sobolev constant remains unaltered, and it turns out that it does not, but due to Aubin we get a kind of

perturbed Sobolev inequality, this is the content of the next proposition due to Aubin in [1]:

Proposition B.0.8 (Aubin). Let (M, g) be a compact Riemannian manifold, 2∗ = 2n
n−2 and denote by σn

the sharp constant in the Sobolev inequality in Rn. Then, for every ϵ > 0 there is a positive constant Cϵ,

such that for all φ ∈ C∞(M),

∥φ∥22∗ ≤ (1 + ϵ)σn

∫
M

|∇φ|2dVg + Cϵ

∫
M

φ2dVg.

We also need another class of spaces.

Definition B.0.9. Let (N, g) be an asymptotically flat manifold (as defined in Definition 4.2.4), with

asymptotic coordinates {zi} on N∞. Let ρ(z) = |z| on N∞, extended to a smooth positive function

on all of N . For β ∈ R, k ∈ N0, define the weighted Ck space Ckβ(N) as the set of Ck functions u for

which the norm

∥u∥Ck
β
=

k∑
i=0

sup
x∈N

ρ−β+i|∇iu(x)|

is finite. Also, define the weighted Hölder space Ck,αβ (N) (α ∈ (0, 1)) as the set of u ∈ Ckβ(N) for which

the norm

∥u∥Ck,α
β

= ∥u∥Ck
β
+ sup
x,y∈N

(min ρ(x), ρ(y))
−β+k+α |∇ku(x)−∇ku(y)|

|x− y|α

is finite. (The supremum, as in the definition of the Hölder spaces Ck,α(M), is over all points x ̸= y, such

that y is contained in a normal coordinate neighbourhood of x, ∇ku(y) is the tensor at x obtained by

parallel transport along the radial geodesic from x to y.)

So far we have made precise what is the natural (coordinate-free) notion of derivative in Riemannian

manifolds, in particular, we have seen that in compact Riemannian manifolds, the Sobolev spaces are

well-defined in the sense that they do not depend on the choice of metric, and are, therefore, natural to

the manifold. Like in the Euclidean case there is, in the Riemannian manifold setting, a notion of a weak

solution to a partial differential equation. Now we have the necessary material to define what is a weak

or distributional solution to a partial differential equation on a Riemannian manifold. We start with the

definition of a linear differential operator.
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Definition B.0.10. Let (M, g) be a compact Riemannian manifold. A linear differential operator A of

order m on M , written in local coordinates {xi}, is an expression of the form:

A(u) =

m∑
l=0

aα1,...,αl

l ∇α1α2...αl
u,

where al are l−tensors, u ∈ Cm(M), and ∇α1α2...αl
u is short for ∇ ∂

∂xα1
...∇ ∂

∂xαl
u. The terms of the

highest order, m, are called the leading part (assuming al is nonzero). The operator is said to be elliptic

at x ∈ U , if there is λ = λ(x) ≥ 1 such that, for all vectors ξ:

∥ξ∥mλ(x)−1 ≤ aα1,...,αm
m ξα1

...ξαm
≤ ∥ξ∥mλ(x).

We say that the operator is uniformly elliptic in U if there exist λ0 and λ(x) (λ(x) is for each x and λ0 is

independent of the point in U ), with 1 ≤ λ(x) ≤ λ0, such that

∥ξ∥mλ−1
0 ≤ aα1,...,αm

m ξα1 ...ξαm ≤ ∥ξ∥mλ0, ∀ξ ∈ Rm,∀x ∈ U.

Now that we know what a partial differential operator on M is, we can generalise the notion of a weak

solution known in the field of partial differential equations in the setting of Rn.

Let A be a linear differential operator of order 2m defined in a Riemannian manifold M . Until now, by a

solution of A(u) = f the only thing that made sense is a function u ∈ C2m(M), such that the equation

is satisfied pointwise, now we generalise (or weaken) the notion of solution. If f ∈ Lq(M) and if the

coefficients of A are measurable and locally bounded, we say that u ∈W 2m,q(M) is a strong solution in

the Lq sense of A(u) = f if there is a sequence {φi} of C∞ functions such that

φi → u, in W 2m,q(M), and A(φi) → f, in Lq(M).

Indeed, in this case, the weak derivatives of u up to order 2m are functions in Lq(M) and A(u) = f

almost everywhere.

Now let A(u) = al∇lu. If the tensors al ∈ Cl(M) for 0 ≤ l ≤ 2m, then we define the formal adjoint of A

by

A∗(φ) = (−1)l∇l(φal).

We say that u ∈ L1(M) is a solution, in the sense of distributions, of A(u) = f if for all φ ∈ C∞
c (M):

∫
M

uA∗(φ)dVg =

∫
M

fφdVg.

If the coefficients al ∈ C∞(M), then a distribution u satisfies A(u) = f if for all φ ∈ C∞
c (M):

⟨u,A∗(φ)⟩ = ⟨f, φ⟩.
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If the operator can be written in divergence form, i.e., if we can write A(u) as

A(u) =
∑

0≤k≤m
0≤l≤m

∇α1...αk
(aα1...αkβ1...βl

k,l ∇β1...βl
u) +

m∑
l=0

bl∇lu,

where ak,l are k + l−tensors and bl are l−tensors. Then u ∈ Wm,q(M) is said to be a weak solution of

A(u) = f with f ∈ L1(M) if for all φ ∈ C∞
c (M):

∑
0≤k≤m
0≤l≤m

(−1)k
∫
M

ak,l∇lu∇kφdVg +

m∑
l=0

∫
M

φbl∇ludVg =

∫
M

fφdVg.

Here we only need ak,l to be measurable and locally bounded for all pairs (k, l). The following is from [8].

Theorem B.0.11 (Local Elliptic Regularity). Let Ω be an open set in Rn, ∆ be the Laplace-Beltrami

operator with respect to any metric on Ω, and u ∈ L1
loc(Ω) a weak solution to ∆u = f .

(a) If f ∈W k,q(Ω), then u ∈W k+2,q(K), for any compact set K ⋐ Ω, and if u ∈ Lq(Ω) then

∥u∥Wk+2,q(K) ≤ C(∥∆u∥Wk,q(Ω) + ∥u∥Lq(Ω)).

(b) (Schauder estimates) If f ∈ Ck,α(Ω), then u ∈ Ck+2,α(K), for any compact subset K ⋐ Ω, and if

u ∈ Cα(Ω) then

∥u∥Ck+2,α(K) ≤ C(∥∆u∥Ck,α(Ω) + ∥u∥Cα(Ω)).

Using the procedure described above with partitions of unity, one is able to prove the following.

Theorem B.0.12 (Global Elliptic Regularity). Let (M, g) be a Riemannian manifold, and suppose u ∈

L1
loc(M) is a weak solution to ∆u = f .

(a) If f ∈W k,q(M), then u ∈W k+2,q(M), and

∥u∥Wk+2,q(M) ≤ C(∥∆u∥Wk,q(M) + ∥u∥Lq(M)).

(b) If f ∈ Ck,α(M), then u ∈ Ck+2,α(M), and

∥u∥Ck+2,α(M) ≤ C(∥∆u∥Ck,α(M) + ∥u∥Cα(M)).

Theorem B.0.13 (Strong Maximum Principle). Let h be a nonnegative, smooth function on a connected

Riemannian manifold (M, g), and u ∈ C2(M) satisfies ∆gu+ hu ≥ 0. If u achieves its minimum, and this

minimum is nonpositive, then u is constant on M .

The following, as seen in [13], will be useful to solve the Yamabe problem in the standard sphere.

Theorem B.0.14 (Weak Removable Singularities). Let U be an open set in M and P ∈ U . Suppose u

is a weak solution of ∆u+ hu = 0 on U \ {P}, with h ∈ Ln/2(U) and u ∈ Lq(U) for some q > p/2. Then

u satisfies ∆u+ hu = 0 weakly on all of U .
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Proof. For a proof of this theorem see [13].

The following definition and theorem, as seen in [8], will be useful in the analysis of the Yamabe

problem in the sphere.

Definition B.0.15. Let Ω ⊂ Rn be a domain. And let L be a differential operator of the form:

Lu = aij(x)
∂2u

∂xi∂xj
+ bi(x)

∂u

∂xi
+ c(x)u, (B.0.2)

with coefficients aij , bi, c, where i, j = 1, ..., n. Consider the equation

Lu = f,

where f is a function on Ω. We say that u is a strong solution to the previous equation if u is a twice

weakly differentiable function that satisfies the equation at almost every point.

Theorem B.0.16 (Proposition 9.15 in [8]). Let Ω ⊂ Rn be a C1,1 domain. Let L be a strictly elliptic

differential operator of the form (B.0.2) in Ω with coefficients aij ∈ C(Ω), bi, c ∈ L∞, with i, j = 1, ..., n

and c ≤ 0. Then if f ∈ Lp(Ω) and φ ∈ W 2,p(Ω), with 1 < p < ∞, the Dirichlet problem Lu = f in Ω,

u− φ ∈W 2,p
0 (Ω) has a unique solution u ∈W 2,p(Ω).

Definition B.0.17. Let n ≥ 3. We define the space D1,2(Rn) to be the subspace of L2∗(Rn) of functions

that have L2(Rn) gradient:

D1,2(Rn) := {u ∈ L2∗(Rn) : ∇u ∈ L2(Rn)}

Lemma B.0.18. Let n ≥ 3. The space D1,2(Rn) with inner product

⟨u, v⟩ =
∫
Rn

∇u · ∇vdx, (B.0.3)

is a Hilbert space.

Proof. In order to prove that D1,2(Rn) is a Hilbert space with respect to the norm induced by (B.0.3), we

prove it is a Banach space, and to that end, we prove that the space of compactly supported smooth

functions is dense in D1,2(Rn).

Let u ∈ D1,2(Rn) and φ ∈ D(Rn) such that 0 ≤ φ ≤ 1, φ ≡ 1 in B1(0) and φ ≡ 0 in B2(0)
c. For R > 0

define the function φR(x) = φ(x/R). We claim that uφR ∈ H1(Rn). Firstly, uφR ∈ L2(Rn), since

∫
Rn

u2φ2
Rdx ≤

(∫
Rn

u2
∗
dx

)n−2
n
(∫

Rn

φnRdx

) 2
n

<∞.

As for the square integrability of the gradient, we have the following

∫
Rn

|∇(uφR)|2dx =

∫
Rn

u2|∇φR|2 + φ2
R|∇u|2 + 2uφR∇u · ∇φRdx

≤ ∥∇φR∥2n∥u∥22∗ + ∥φR∥2∞∥∇u∥22 + 2∥uφR∥2∥|∇u||∇φR|∥2 ≤ ∞.
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So that ∇(uφR) ∈ L2(Rn), and subsequently, uφR ∈ H1(Rn).

Having now shown that we can, in some sense, descend from D1,2(Rn) into H1(Rn), we make the

stronger claim that H1(Rn) is dense in D1,2(Rn). In fact, we want to show that uφR → u, as R → +∞,

in D1,2(Rn). We denote by ∥ · ∥ the norm in D1,2(Rn) induced by the inner product (6.2). Now we have

∥uφR − u∥2 =

∫
Rn

∇(u(φR − 1)) · ∇(u(φR − 1))dx

=

∫
Rn

|∇u|2(φR − 1)2 + u2|∇φR|2 + 2u(φR − 1)∇u · ∇φRdx,
(B.0.4)

to see that ∥uφR − u∥2 → 0, as R → +∞, we analyse each of the terms in (B.0.4) independently. The

first term converges to zero by dominated convergence. For the second term, we have

∫
Rn

u2|∇φR|2dx =

∫
{R≤|x|≤2R}

u2|∇φR|2dx ≤

(∫
{R≤|x|≤2R}

u2
∗
dx

)n−2
n
(∫

{R≤|x|≤2R}
|∇φR|ndx

) 2
n

=

(∫
{R≤|x|≤2R}

u2
∗
dx

)n−2
n
(∫

{1≤|x|≤2}
|∇φ|ndx

) 2
n

,

which converges to zero as R approaches infinity because u ∈ L2∗(Rn). Finally, for the third term, we

have ∫
Rn

2u(φR − 1)∇u · ∇φRdx ≤ ∥|∇u|(φR − 1)∥2∥u|∇φR|∥2,

which, by the arguments used for the second term converges to zero by dominated convergence as

R → ∞. This allows us to conclude that uφR → u, as R → ∞ in D1,2(Rn). Hence, H1(Rn) is dense in

D1,2(Rn). Furthermore, the density of C∞
c (Rn) in H1(Rn) allows us to conclude that C∞

c (Rn) is dense in

D1,2(Rn).

Now let {um} be a Cauchy sequence in D1,2(Rn), and let {vm} be a sequence in D(Rn) such that

∥um − vm∥ ≤ 1
2m for all m ∈ N. Then {vm} is also a Cauchy sequence in D1,2(Rn), then by the

Gagliardo-Nirenberg inequality we have

∥vm − vk∥2∗ ≤ C∥∇(vm − vk)∥2 = C∥vm − vk∥,

and therefore, {vm} is a Cauchy sequence in L2∗(Rn). Now let u ∈ L2∗(Rn) be the limit of the sequence

{vm} in L2∗(Rn). Moreover, we have that the sequences of partial derivatives of {vm}, {∂vm∂xi
} (i =

1, ..., n), are Cauchy sequences in L2(Rn), and subsequently, there are g1, ..., gn ∈ L2(Rn) such that∥∥∥∥∂vm∂xi − gi

∥∥∥∥
2

→ 0, as m→ +∞,

for all i = 1, ..., n.

It is easy to see that the (weak) partial derivatives of u are the functions gi, that is ∂u
∂xi

= gi for all

i = 1, ..., n. And so

vm → u, in D1,2(Rn), (B.0.5)
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which implies, via the triangle inequality, that um → u in D1,2(Rn).

Remark B.0.19. A consequence of the previous proof is the fact that the Sobolev inequality still holds

in D1,2(Rn).

We finish with a crucial regularity result as seen in [13]

Theorem B.0.20 (Regularity). Suppose φ ∈ H1(M) is a nonnegative weak solution of (3.1.2) with

2 ≤ s ≤ 2∗, and |λs(M)| ≤ K for some constant K ∈ R. If φ ∈ Lr(M) for some r > (s − 2)n/2 (in

particular, if r = s < 2∗, or if s = 2∗ < r), then φ is either identically zero or strictly positive and smooth,

and ∥φ∥C2,α ≤ C, for some α ∈ (0, 1), with C = C(M, g,K, ∥φ∥r).

Proof. For a proof see [13].
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