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Abstract

We construct a universe consisting of two identical static patches of the de Sitter Universe connected
by a thick matter shell. This is something Hermann Weyl did in the 20th century. However, Weyl’s
solution is not correct as he overlooked the continuity of the derivative of g00 in the transition zone.
Taking this into account, we try to find correct solutions by solving the TOV equations numerically
using various equations of state for a perfect fluid, namely constant density, affine equation of state,
linear equation of state and polytropic equation of state. The linear equation of state does not give a
solution and more analysis is needed to conclude about the others. Using the Einstein cluster model

instead of a perfect fluid for the thick matter shell, we obtain a set of analytical solutions.

1 Introduction

1.1 Spherically Symmetric Static Space-Time

A space-time is static if the metric does not depend on time and the transformation t 7→ −t leaves
it invariant, which implies that the components g0i vanish.

Thus, the metric can be reduced to

ds2 = −e2ϕ(x1, x2, x3)dt2 + gij(x
1, x2, x3)dxidxj . (1)

If the metric has spherical symmetry, then it c can be further reduced to

ds2 = e−2ϕdt2 +

(
1− 2m

r

)−1

dr2 + r2dΩ2 , (2)

where ϕ = ϕ(r) and m = m(r) can be thought of as the gravitational potential and the mass function,
respectively [1].

1.2 Einstein Equations

The Einstein Equations for general relativity are given by [1]

Gµν +Λgµν = 8πTµν , (3)

where Gµν is the Einstein tensor, Λ is the cosmological constant, gµν is the metric tensor and Tµν is
the stress-energy tensor. If we put the term with cosmological constant on the right-hand side, we
obtain an effective stress-energy tensor, resulting in

Gµν = 8πT(eff)
µν . (4)

1.2.1 Perfect Fluid with Spherical Symmetry

The effective stress-energy tensor for a perfect fluid is given by

T(eff)
µν = (ρ+ p)UµUν + p gµν , (5)

where ρ and p are the effective density and pressure arising from the stress-energy tensor and the
cosmological constant.
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Taking the spherically symmetric metric in equation (2) and the stress-energy tensor for a perfect
fluid (5) and inputting it in (4), we get the standard TOV equations [1]

dm

dr
= 4πr2ρ , (6)

dϕ

dr
=

m+ 4πr3p

r2
(
1− 2m

r

) , (7)

dp

dr
= − (ρ+ p)

dϕ

dr
. (8)

Additionally, to close this system of equations, we also need an equation of state for the fluid,
which we are free to choose:

p = p(ρ) . (9)

1.3 Example: Einstein Static Universe

The most simple example of a spherically symmetric static space-time is the Einstein Universe. It
is the solution of equations (6), (7) and (8) with positive Λ and with a uniform distribution of matter.
Its metric is

ds2 = −dt2 + dψ2 + sin2 ψ(dθ2 + sin2 θdφ2) . (10)

Figure 1: Diagram of the Einstein Universe. Time grows vertically and each circle slice represents a
3-sphere. Note that the radius stays constant throughout the time. In blue is represented the path of
a photon.

2 De Sitter Universe

The de Sitter space-time is a maximally symmetric solution of the vacuum Einstein equations with
positive cosmological constant [2]. We can set Λ = 3 since it is just a matter of choosing length units.
This way, its metric is given by
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ds2 = −dt2 + cosh2(t)
(
dψ2 + dΩ2

)
(11)

where dΩ2 = dθ2 + sin2 θdφ2.

Figure 2: De Sitter Universe. Time grows vertically and each circle slice represents a 3-sphere.
The radius (given by the term cosh(t)) is initially decreasing until a certain minimum, where the
cosmological constant starts dominating and makes the universe expand again. The delineated zone
is the static patch of the de Sitter Universe. [3]

2.1 Static Patch

The metric in (11) is not static, since it depends explicitly on t. A static metric can be obtained
by performing a coordinate transformation and the resulting metric is

ds2 = −(1− r2)dt2 + (1− r2)−1dr2 + r2dΩ2 . (12)

We could also obtain this by setting ρ = Λ
8π = 3

8π and p = − Λ
8π = − 3

8π and solving the TOV equations.
The static patch only describes a part of the de Sitter Universe, delineated in figure 2. We can see

this in the Penrose diagram in figure 3 as well. Notice that there is a cosmological horizon for r = 1.

3



Figure 3: Penrose diagram of the de Sitter Universe. The left triangle is the static patch, the vertical
curved lines represent lines of constant r and the horizontal ones represent lines of constant t. The
left edge of the triangle is r = 0 and the other edges of the triangle are the cosmological horizon r = 1.
[4]

3 Static Patch with Thick Matter Shell

3.1 Weyl’s mistake

To avoid the cosmological horizon in the static patch, Hermann Weyl tried to add matter at some
radius r0 smaller than the horizon. That is, he tried to find a solution that consisted of the static
patch for 0 < r < r0 and of a static and spherically symmetric solution for a perfect fluid with constant
density for r0 < r. He did this in his book ”Space-Time-Matter” and he obtained the following solution
[5]

g00 = −
(
1− λ

6
r2
)

in the de Sitter region, (13)

g00 = −
(
1− 2M

r
− 2µ0 + λ

6
r2
)

in the matter region, (14)

with

λ, µ0 constants, (15)

M =
µ0
6
r30 by the continuity of g00 in r0. (16)

Weyl correctly considered the continuity of g00 for r = r0, which translates into the continuity of
the function ϕ(r), the “gravitational potential”. However, he did not take into account the continuity
of the derivative, which can be easily verified from equations (13) and (14).

This means that there is a discontinuity in the “gravitational field”. In analogy with electro-
magnetism, this implies the existence of a surface distribution of matter for r = r0, which was not
intended.

Notice that in this case the horizon in the static patch occurs for r =
(
6
λ

)1/2
, so r0 must be less

than that. Nevertheless, this does not change any of the conclusions.

3.2 Thick Matter Shell

The objective is to construct a universe consisting of a static patch for r < r0, followed by some
matter and then a static patch again, as illustrated in figure 4.
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Figure 4: Diagram of two identical de Sitter Universes joined by a thick matter shell

This has been done before with a thin matter shell instead of a thick matter shell, that is, with
a surface distribution of matter in [6]. It is different from Weyl’s solutions as it joins two de Sitter
regions directly.

Let us now rewrite the equations with quantities that relate only to the matter. We can set

ρ̄ = ρ− Λ

8π
= ρ− 3

8π
, (17)

p̄ = p+
Λ

8π
= p+

3

8π
, (18)

m̄ = m− Λr3

6
= m− r3

2
, (19)

which is just subtracting from ρ, p and m the terms arising from the cosmological constant. Then the
TOV equations become

dm̄

dr
= 4πr2ρ̄ , (20)

dϕ

dr
=

m̄+ 4πr3p̄− r3

r2
(
1− r2 − 2m̄

r

) , (21)

dp̄

dr
= − (ρ̄+ p̄)

dϕ

dr
. (22)

It is only necessary to solve the equations for the matter region until we reach the “equator”
satisfying r = r1 > r0, and then the solution can be mirrored to the other side. The equator is defined
as the largest radius of the universe, which is given by grr = 0:

1− r21 −
2m̄

r1
= 0 . (23)

For a viable thick matter shell, there are several boundary conditions that need to be satisfied:

1. Continuity of ϕ at r0;

2. Continuity of dϕ
dr at r0;
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3. Continuity of m̄ at r0;

4. Derivative of ϕ must be 0 at r1;

5. Derivative of m̄ must be 0 at r1.

The first two conditions are motivated by the continuity of the potential and of the gravitational
field. The third one comes from the continuity of the metric and implies m̄(r0) = 0. The last two
come from an argument of symmetry: we do not want the gravitational field to pull to one half or the
other, nor the mass to grow in one direction or the other at the equator.

Since ϕ(r) = 1
2 log(1− r2) in the de Sitter region, the first condition implies ϕ(r0) =

1
2 log(1− r20).

The second condition actually implies that p̄(r0) = 0 and this can be easily calculated. The
derivative of ϕ in the matter region is given by equation (21). Then, in order for dϕ

dr to be continuous,
we have

dϕ

dr

(
r−0

)
=
dϕ

dr

(
r+0

)
⇔ − r0

1− r20
=
m̄(r0) + 4πr3p̄(r0)− r30

r2
(
1− r20 −

2m̄(r0)
r0

) . (24)

Since m̄(r0) = 0, the equation becomes

p̄(r0) = 0 . (25)

The last two conditions must be treated more carefully, since r is not a good coordinate choice
when r → r1, because grr → ∞. We can choose another coordinate, namely the arc length l, given by

dl2 =

(
1− r2 − 2m̄

r

)−1

dr2 . (26)

The derivative of ϕ becomes

dϕ

dl
=

√
1− r2 − 2m̄

r

dϕ

dr
. (27)

When r = r1 , the term inside the square root is zero, by the definition of the equator in equation
(23). So in order to have dϕ

dl (r1) = 0, we just need dϕ
dr to be finite as r → r1 .

The same argument can be made for m̄, and we reach the same conclusion, namely that dm̄
dr needs

to be finite as r → r1; however, this condition is automatically satisfied due to equation (20), since ρ̄
is assumed to be always finite.

4 Perfect Fluid with Constant Density

If we choose (as Weyl did)

ρ̄ =
3k

4π
, (28)

where k is a positive constant, we obtain

m̄ = kr3 − kr30 , (29)

dϕ

dr
=

(k − 1)r3 − kr30 + 4πr3p̄

r2
(
1− r2 − 2m̄

r

) , (30)

dp̄

dr
= − (ρ̄+ p̄)

dϕ

dr
. (31)

By setting k = 0.5 and r0 = 0.3, for example, we can solve the equations numerically.
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Figure 5: Plot of the numerical solutions obtained in Mathematica for ϕ and for p̄ with constant
density. The green function defines r1 where it intersects the r axis.

We can see that the solutions for both ϕ and p̄ blow up when r → r1, which means that the
derivative of ϕ is not finite. Using other values for k we achieve similar results.

In order for dϕ
dr to be finite, we need the numerator in (30) to be zero at r1, that is,

(k − 1)r31 − kr30 + 4πr31p̄(r1) = 0 , (32)

because the denominator vanishes by definition of the equator (23). This is a very strict relation
between the r1 and the pressure at that point, which will be very hard to obtain numerically.

5 Pefect Fluid with Affine Equation of State

Instead of constant density, we can choose an affine equation of state, that is,

ρ̄ =
p̄

c2s
+ ρ̄0 , (33)

where cs is the speed of sound and ρ̄0 is the density at zero pressure.
The TOV equations can be reduced to two equations by substituting the equation (21) for ϕ into

equation (22) for p̄, yielding

dm̄

dr
= 4πr2ρ̄ , (34)

dp̄

dr
= − (ρ̄+ p̄)

m̄+ 4πr3p̄− r3

r2
(
1− r2 − 2m̄

r

) . (35)

Because of the relation between ϕ and p̄ in equation (22), the condition for dϕ
dr to be finite as r → r1

can be translated into dp̄
dr being finite as r → r1, as long as the term (ρ̄+ p̄) is non-vanishing.

We can solve the equations numerically by setting for example c2s = 0.0004, ρ0 = 75 and r0 = 0.2.

7



Figure 6: Plot of the numerical solutions obtained in Mathematica for m̄ and for p̄ with an affine
equation of state.

It can be observed that the pressure initially drops to a negative value and then remains nearly
constant, even when r → r1. This means that dp̄

dr remains finite. The term (ρ̄ + p̄) turns out to be

vanish as r → r1 in this case. If we plot dϕ
dr given by equation (21), it is visible that dϕ

dr blows up when
r → r1, as shown in figure 7. So this solution is not correct.

Figure 7: Plot of the numerical solution obtained in Mathematica for the derivative of ϕ

For dϕ
dr in equation (21) to be finite, we need

m̄+ 4πr3p̄− r3 = 0 (36)

when r = r1, because the denominator vanishes by definition of the equator (23). We can write m̄(r1)
in terms of r1 from that definition and substitute in (36), resulting in the following relation:

4πr21p̄(r1) +
1

2
r1 −

3

2
r31 = 0 . (37)

This is a very strict relation between the r1 and the pressure at that point, which will be very hard
to obtain numerically.

6 Perfect Fluid with Linear Equation of State

The linear equation of state is given by

ρ̄ =
p̄

c2s
(38)
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where cs is the speed of sound. The equations are the same as before:

dm̄

dr
= 4πr2ρ̄ , (39)

dp̄

dr
= − (ρ̄+ p̄)

m̄+ 4πr3p̄− r3

r2
(
1− r2 − 2m̄

r

) . (40)

Setting c2s = 0.0004 and r0 = 0.2 and solving numerically, we obtain:

Figure 8: Plot of the numerical solutions obtained in Mathematica for m̄ and for p̄ with a linear
equation of state.

The solutions for m̄ and for p̄ are identically zero, which means there is actually no matter and
the solution is just the de Sitter static patch. What happens is that because the initial conditions are
m̄(r0) = p̄(r0) = 0, the density is initially zero and it remains so because it satisfies the equations.
This means that the linear equation of state is inadequate for our problem.

7 Perfect Fluid with Polytropic Equation of State

The polytropic equation of state is given by

ρ̄ =
( p̄
k

) n
n+1

, (41)

where k and n are constants.
If we solve this numerically, the solutions for m̄ and p̄ vanish identically, since it suffers from

the same problem as the linear equation of state. However, the polytropic equation of state is not
Lipschitz, and so there is more than one solution for the TOV equations, which cannot be found
numerically and will require analytical techniques.

8 Einstein Cluster Model

We can try other matter models instead of the perfect fluid, such as the anisotropic fluid, which is
similar to a spherically symmetric perfect fluid but has a radial pressure prad and a tangential pressure
ptan not necessarily equal [7]. The TOV equations are in this case
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dm

dr
= 4πr2ρ , (42)

dϕ

dr
=
m+ 4πr3prad

r2
(
1− 2m

r

) , (43)

dprad
dr

=
2

r
(ptan − prad)− (ρ+ prad)

dϕ

dr
, (44)

where both pressures include the terms from the cosmological constant.
If we keep prad constant and equal to − Λ

8π = − 3
8π (Einstein cluster condition [7]), for simplicity,

we obtain from (42)–(44)

dϕ

dr
=

m− 3
2r

3

r2
(
1− 2m

r

) , (45)

ptan = − 3

8π
+
r

2
(ρ+ prad)

dϕ

dr
. (46)

Just like before, if we define the barred quantities by subtracting the terms arising from the
cosmological constant,

ρ̄ = ρ− Λ

8π
= ρ− 3

8π
, (47)

p̄tan = ptan +
Λ

8π
= ptan +

3

8π
, (48)

m̄ = m− r3

2
, (49)

p̄rad = prad +
Λ

8π
= 0 , (50)

then we can rewrite the TOV equations as

dm̄

dr
= 4πr2ρ̄ , (51)

dϕ

dr
=

m̄− r3

r2
(
1− r2 − 2m̄

r

) , (52)

p̄tan =
rρ̄

2

dϕ

dr
. (53)

In order to build a viable thick matter shell model, the same conditions discussed in section 3.2
must apply. However, the continuity of the derivative of ϕ in r0 is automatically satisfied since p̄rad = 0.
So we just need ϕ(r0) =

1
2 log

(
1− r20

)
, m̄(r0) = 0, and dϕ

dr (r1) and
dm̄
dr (r1) to be finite.

In order for (52) to yield a finite result in the equator defined as in equation (23), we must have

m̄− r31 = 0 . (54)

Therefore, we obtain {
r1 =

√
3
3

m̄(r1) =
√
3
9

. (55)

A viable thick shell model can then be constructed by selecting a smooth function m̄ = m̄(r) which

vanishes for r < r0 <
√
3
3 and satisfies (55).
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Additionally, in order for the matter density to be non-negative we must have, for any r,

m̄′ ≥ 0 . (56)

Furthermore, in order for matter to satisfy the dominant energy condition, which basically stipu-

lates that energy does not flow faster than the speed of light [2], we must have, for r0 < r <
√
3
3 ,

ρ̄ ≥ |p̄tan| ⇒
∣∣∣∣dϕdr

∣∣∣∣ ≤ 2

r
. (57)

In this way, we obtain a family of exact solutions by choosing a smooth function for m̄(r) that

obeys equations (55), (56) and (57) for r0 < r <
√
3
3 .

8.1 Example

For a simple example, we can choose r0 =
2
√
3

9 and

m̄(r) = r − r0 (58)

for r0 < r <
√
3
3 , leading to

ρ̄ =
1

4πr2
, (59)

dϕ

dr
=

(
r −

√
3
3

)(
r + 2

√
3

3

)
r
(
r2 +

√
3
3 r +

4
3

) , (60)

p̄tan =
rρ̄

2

dϕ

dr
. (61)

Note that
dϕ

dr
≤ 0 ⇒ p̄tan ≤ 0 , (62)

that is, the matter is always under tension. This matter model resembles a membrane that is stretched
along its tangent direction and that can be deformed without resistance perpendicularly (since prad =
0). Moreover, ∣∣∣∣dϕdr

∣∣∣∣ ≤
(√

3
3 − 2

√
3

9

)(√
3
3 + 2

√
3

3

)
r
(

4
27 + 2

9 + 4
3

) =
9

46r
(63)

for r0 < r <
√
3
3 , and so the matter satisfies the dominant energy condition.

9 Conclusions

Our objective was to construct a universe made of two identical static patches of the de Sitter’s
Universe joined by a thick matter shell.

Assuming a perfect fluid as the matter matter model, we solved the TOV equations to obtain
a solution, using various equations of state. The conditions for a viable thick matter shell lead to
ϕ(r0) =

1
2 log(1 − r20), p̄(r0) = 0 = m̄(r0) and finite values for the derivatives of ϕ and m̄ in r1. The

perfect fluid with constant density and with an affine equation of state show to potential to lead to a
solution, but under very strict conditions, and we were not able to find such a solution numerically.
The linear equation of state gives a vanishing solution for pressure and mass functions, meaning that it
is inadequate for our problem. The polytropic equation of state also gives an identically zero solution.
However, the solution is not unique since the polytropic equation of state is not Lipschitz. This means
that analytical techniques must be used to draw further conclusions.

By using a different matter model, namely the Eistein cluster model, we obtained a viable thick

matter shell by choosing a smooth function that vanishes for r0 < r < r1 and that obeys r1 =
√
3
3 and

m̄(r1) =
√
3
9 for r0 < r < r1.
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Basel, Basel, 2006.

[4] Brian R. Greene, Maulik K. Parikh, and Jan Pieter van der Schaar. Universal correction to the
inflationary vacuum. Journal of High Energy Physics, 2006(04):057, apr 2006.

[5] Hermann Weyl. Space—Time—Matter. Project Gutenberg, 2013.

[6] S. Danial Forghani and S. Habib Mazharimousavi. A closed universe: de Sitter cosmic gate. Physics
Letters B, 834:137411, November 2022.

[7] C. G. Böhmer and T. Harko. On Einstein clusters as galactic dark matter haloes. Monthly Notices
of the Royal Astronomical Society, 379(1):393–398, 06 2007.

12


	Introduction
	Spherically Symmetric Static Space-Time
	Einstein Equations
	Perfect Fluid with Spherical Symmetry

	Example: Einstein Static Universe

	De Sitter Universe
	Static Patch

	Static Patch with Thick Matter Shell
	Weyl's mistake
	Thick Matter Shell

	Perfect Fluid with Constant Density
	Pefect Fluid with Affine Equation of State
	Perfect Fluid with Linear Equation of State
	Perfect Fluid with Polytropic Equation of State
	Einstein Cluster Model
	Example

	Conclusions
	Acknowledgements

