Mathematical Relativity
 2021/2022

$2^{\text {nd }}$ Exam - 15 July 2022-10:00

1. Let (M, g) be a time-oriented spacetime and $p \in M$. For each of the following statements, give a proof if true or a counter-example if false.
(a) $I^{+}(p)$ is not closed.
(b) $I^{+}\left(I^{+}(p)\right)=I^{+}(p)$.
(c) If (M, g) is stably causal then there are no closed causal curves.
(d) If (M, g) is stably causal then for each $q \in I^{+}(p)$ there exists a constant C_{q} such that any timelike curve connecting p and q satisfies $\tau(c) \leq C_{q}$.
2. Let (S, h) be the Riemannian manifold given by $S=\mathbb{R} \times S^{2}$ and

$$
h=d x^{2}+d \theta^{2}+\sin ^{2} \theta d \varphi^{2}
$$

(where (θ, φ) are the usual spherical coordinates on S^{2}), and let

$$
K=2 d x^{2}+d \theta^{2}+\sin ^{2} \theta d \varphi^{2} .
$$

(a) Show that (S, h, K) is an initial data set for the vacuum Einstein equations for a certain value of the cosmological constant Λ, and compute this value.
(b) Prove that the corresponding maximal globally hyperbolic development is geodesically incomplete.
3. Let h be the spherically symmetric Riemannian metric defined in \mathbb{R}^{3} by

$$
h=\left(1-\frac{2 m(r)}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right),
$$

where m is a suitable smooth function whose derivative has compact support.
(a) Show that in Cartesian coordinates we have

$$
\begin{equation*}
h_{i j}=\delta_{i j}+\frac{2 m(r)}{r^{3}}\left(1-\frac{2 m(r)}{r}\right)^{-1} x^{i} x^{j}, \tag{2/20}
\end{equation*}
$$

and conclude that h is asymptotically flat with ADM mass

$$
M=\lim _{r \rightarrow+\infty} m(r) .
$$

(2/20) (b) Check that the scalar curvature of h is given by

$$
\bar{R}=\frac{4}{r^{2}} \frac{d m}{d r}
$$

and prove the Riemannian positive mass theorem in this case.
(2/20) (c) Show that $r=r_{0}$ is a minimal surface if and only if $m\left(r_{0}\right)=\frac{r_{0}}{2}$ (in which case r is a well-defined coordinate only for $r>r_{0}$), and prove the Riemannian Penrose inequality in this case.

