Mathematical Relativity
 2021/2022
 $1^{\text {st }}$ Exam - 11 July 2022-10:00

1. Let (M, g) be a time-oriented spacetime and $p \in M$. For each of the following statements, give a proof if true or a counter-example if false.
(a) $I^{+}(p) \neq M$.
(b) $\partial I^{+}(p)=\partial J^{+}(p)$.
(c) If $M=\mathbb{R} \times S$ and $g=-d t^{2}+h$, where (S, h) is a geodesically incomplete Riemannian manifold, then (M, g) is not globally hyperbolic.
(d) If $q \in I^{+}(p)$ is connected to p by a non-maximizing timelike geodesic c then there exists a conjugate point along c between p and q.
2. The Nariai solution is the Lorentzian manifold (M, g) given by $M=\mathbb{R}^{2} \times S^{2}$ and

$$
g=-d t^{2}+\cosh ^{2}(t) d x^{2}+d \theta^{2}+\sin ^{2} \theta d \varphi^{2}
$$

(where (θ, φ) are the usual spherical coordinates on S^{2}).
(a) Sketch the Penrose diagram of the Nariai solution.
(b) The Nariai solution solves the vacuum Einstein equations for a certain value of the cosmological constant Λ. Compute this value.
(c) Show that the Penrose singularity theorem does not hold if we replace "trapped surface" by "marginally trapped surface" in its statement (a marginally trapped surface is a surface whose null expansions are both nonpositive, as opposed to negative for a trapped surface).
3. The Kerr metric is given by

$$
\begin{aligned}
d s^{2}= & -\left(1-\frac{2 M r}{\rho^{2}}\right) d t^{2}-\frac{4 M a r \sin ^{2} \theta}{\rho^{2}} d t d \varphi+\frac{\rho^{2}}{\Delta} d r^{2} \\
& +\rho^{2} d \theta^{2}+\left(r^{2}+a^{2}+\frac{2 M a^{2} r \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta d \varphi^{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& \rho^{2}=r^{2}+a^{2} \cos ^{2} \theta, \\
& \Delta=r^{2}-2 M r+a^{2}
\end{aligned}
$$

and $M, a \in \mathbb{R}$ are constants. Consider the region $r \gg M, a$.
(2/20) (a) Show that a positive orthonormal coframe is approximately given in this region by

$$
\begin{aligned}
& \omega^{0} \sim d t, \quad \omega^{r} \sim d r, \quad \omega^{\theta} \sim r d \theta \\
& \omega^{\varphi} \sim r \sin \theta d \varphi-\frac{2 M a \sin \theta}{r^{2}} d t
\end{aligned}
$$

(2/20)
(b) Setting $X=\frac{\partial}{\partial t}$ and $Y=\frac{\partial}{\partial \varphi}$, establish the following asymptotic formulas:

$$
\begin{aligned}
& X^{b} \sim-\left(1-\frac{2 M}{r}\right) d t-\frac{2 M a \sin ^{2} \theta}{r} d \varphi ; \\
& Y^{b} \sim-\frac{2 M a \sin ^{2} \theta}{r} d t+r^{2} \sin ^{2} \theta d \varphi ; \\
& d X^{b} \sim \frac{2 M}{r^{2}} \omega^{0} \wedge \omega^{r}+\ldots ; \\
& d Y^{b} \sim-\frac{6 M a \sin ^{2} \theta}{r^{2}} \omega^{0} \wedge \omega^{r}+\ldots
\end{aligned}
$$

(2/20) (c) Prove that the Komar mass and the Komar angular momentum of the Kerr solution are given by $M_{\text {Komar }}=M$ and $J_{\text {Komar }}=M a$.

