Mathematical Relativity
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1. Let (M, g) be a time-oriented spacetime and p € M. For each of the following statements,
give a proof if true or a counter-example if false.

(2/20) (a) I'*(p) # M.
(2/20) (b) OI*(p) = 0T+ (p).
(2/20) (c) f M =R x S and g = —dt?+ h, where (S, h) is a geodesically incomplete Rieman-

nian manifold, then (M, g) is not globally hyperbolic.

(2/20) (d) If ¢ € I't(p) is connected to p by a non-maximizing timelike geodesic ¢ then there
exists a conjugate point along ¢ between p and gq.

2. The Nariai solution is the Lorentzian manifold (M, g) given by M = R? x S? and
g = —dt* + cosh?(t)dz? + d#?* + sin? 0dy?
(where (6, ) are the usual spherical coordinates on S?).

(2/20) (a) Sketch the Penrose diagram of the Nariai solution.

(2/20) (b) The Nariai solution solves the vacuum Einstein equations for a certain value of the
cosmological constant A. Compute this value.

(2/20) (c) Show that the Penrose singularity theorem does not hold if we replace “trapped
surface” by “marginally trapped surface” in its statement (a marginally trapped
surface is a surface whose null expansions are both nonpositive, as opposed to
negative for a trapped surface).

3. The Kerr metric is given by
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where
p> = 1%+ a®cos® 0,
A:r2—2Mr—|—a2,

and M, a € R are constants. Consider the region r > M, a.
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(a) Show that a positive orthonormal coframe is approximately given in this region by

WO~ dt, w" ~dr, W’ ~ rdb,
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(b) Setting X = — and Y = —, establish the following asymptotic formulas:
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(c) Prove that the Komar mass and the Komar angular momentum of the Kerr solution
are given by Mkomar = M and Jkomar = Ma.



