Mathematical Relativity 2021/2022 Mock Exam – 2 hours

- 1. Let (M,g) be a time-oriented spacetime. For each of the following statements, give a proof if true or a counter-example if false.
- (2/20) (a) $I^+(p)$ is an open set for any $p \in M$.
- (2/20) (b) $J^+(p)$ is a closed set for any $p \in M$.
- (2/20) (c) If (M, g) is globally hyperbolic and $S \subset M$ is closed then $D^+(S)$ is also closed.
- (2/20) (d) If for every $p, q \in M$ such that $q \in I^+(p)$ there exists a maximizing timelike curve connecting p and q then (M, g) is globally hyperbolic.

2. Let (S,h) be the Riemannian manifold given by $S = \mathbb{R} \times S^2$ and

$$h = dx^2 + d\theta^2 + \sin^2\theta d\varphi^2$$

(where (θ, φ) are the usual spherical coordinates on S^2), and let

$$K = -dx^2 + d\theta^2 + \sin^2\theta d\varphi^2.$$

- (3/20) (a) Show that (S, h, K) is an initial data set for the vacuum Einstein equations.
- (3/20) (b) Prove that the corresponding maximal globally hyperbolic development is geodesically incomplete.

3. Let (M,g) be an expanding spatially flat FLRW model, that is, $M=\mathbb{R}^+\times\mathbb{R}^3$ and

$$g = -dt^{2} + a^{2}(t) \left(dx^{2} + dy^{2} + dz^{2} \right)$$

with $\dot{a}(t) > 0$ for all $t \in \mathbb{R}^+$. Given $t_0 > 0$, consider the following Cauchy problem for the wave equation on (M, g):

$$\begin{cases} \Box \phi = 0\\ \phi(t_0, x, y, z) = \phi_0(x, y, z)\\ \partial_t \phi(t_0, x, y, z) = \phi_1(x, y, z) \end{cases}$$

(where $\phi_0, \phi_1 : \mathbb{R}^3 \to \mathbb{R}$ are smooth functions).

- (3/20) (a) Show that if $T_{\mu\nu} = \partial_{\mu}\phi \,\partial_{\nu}\phi \frac{1}{2}\partial_{\alpha}\phi \,\partial^{\alpha}\phi \,g_{\mu\nu}$ is the energy-momentum tensor associated to the wave equation and $X = \frac{1}{a(t)}\frac{\partial}{\partial t}$ then the current $Y_{\mu} = T_{\mu\nu}X^{\nu}$ satisfies $\nabla_{\mu}Y^{\mu} \ge 0$.
- (3/20) (b) Use the energy method to prove that any two smooth solutions of the Cauchy problem whose initial data coincide on a ball $B \subset \mathbb{R}^3$ are identical on $D^+(\{t_0\} \times B)$.