Geometric Mechanics

Homework 4

Due on January 24

1. In this exercise we study in detail the timelike and null geodesics of the Schwarzschild space-
time. By symmetry, it suffices to study the geodesics of the totally geodesic 3-dimensional

Lorentzian submanifold # = 7 (equatorial plane), whose metric is
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(a) Show that the equations for a future-directed geodesic (parameterized by proper time
if timelike) can be written as
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where E > 0 and L are integration constants, o = 1 for timelike geodesics and ¢ = 0
for null geodesics.

(b) Show that if L # 0 then u = 1 satisfies
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(c) For situations where relativistic corrections are small one has mu < 1, and hence the
approximate equation
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holds for timelike geodesics. Show that the solution to this equation is the conic section
given in polar coordinates by
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where the integration constants € > 0 and g are the eccentricity and the argument
of the pericenter.
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(d) Show that for ¢ < 1 this approximate solution satisfies
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Argue that timelike geodesics close to circular orbits where relativistic corrections are
small yield approximate solutions of the equation
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and hence the pericenter advances by approximately
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radians per revolution.

(Remark: The first success of general relativity was using this effect to explain the anomalous precession of

Mercury’s perihelion — 43 arcseconds per century).

Show that if one neglects relativistic corrections then null geodesics satisfy
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Show that the solution to this equation is the equation for a straight line in polar
coordinates,
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where the integration constants b > 0 and ¢ are the impact parameter (distance of
closest approach to the center) and the angle between the line and the z-axis.

Assume that mu < 1. Let us include relativistic corrections by looking for approximate
solutions of the form
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(where we take o = 0 for simplicity). Show that v is an approximate solution of the
equation
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and hence u is approximately given by
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where « and [ are integration constants.
Show that for the incoming part of the null geodesic (¢ ~ 0) one approximately has
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Similarly, show that for the outgoing part of the null geodesic (¢ ~ 7) one approxi-
mately has
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Conclude that ¢ varies by approximately
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radians along its path, and hence the null geodesic is deflected towards the center by
approximately
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radians.

(Remark: The measurement of this deflection of light by the Sun — 1.75 arcseconds — was the first experimental

confirmation of general relativity, and made Einstein a world celebrity overnight).



2. Consider two galaxies in a FLRW model
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whose spatial locations can be assumed to be 7 =0 and (7,0, ¢) = (r1,61, ¢1).

(a)

(b)

Show that the family (reparameterized) null geodesics connecting the first galaxy to
the second galaxy can be written as
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where t(r, to) is the solution of
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The redshift of the light propagating from the first galaxy to the second galaxy is
defined as

, where i1 = t(rl, to).
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This light is spread over a sphere of radius R = a(t1)r;, and so its brightness is
inversely proportional to R%. Compute R as a function of z and ¢; for the following
FLRW models:

(i) Milne universe, for which k = —1 and a(t) = ¢;

(i) Flat de Sitter universe, for which k = 0 and a(t) = e'’*;

(iii) Einstein-de Sitter universe, for which k& = 0 and a(t) = (t/t;)%/3.

— 1.

(Remark: The brightness of distant galaxies is further reduced by a factor of (1 + z)2, since each photon has
frequency, hence energy, (1 + z) times smaller at reception, and the rate of detection of photons is (1 + z)
times smaller than the rate of emission; with this correction, R can be deduced from the observed brightness
for galaxies of known luminosity, and the correct FLRW model can be chosen as the one whose curve R = R(z)

best fits observations).



