Geometric Mechanics

Homework 1

Due on October 13

1. The equation of motion for a particle of mass m moving on the real line under the influence of a force $F: \mathbb{R} \rightarrow \mathbb{R}$ is given by Newton's equation

$$
m \ddot{x}(t)=F(x(t))
$$

(a) Show that the solutions of this equation are the projections on \mathbb{R} of the flow of the vector field $X \in \mathfrak{X}(T \mathbb{R})$ given by

$$
X=v \frac{\partial}{\partial x}+\frac{1}{m} F(x) \frac{\partial}{\partial v}
$$

where (x, v) are the usual local coordinates on $T \mathbb{R} \cong \mathbb{R}^{2}$.
(b) Find all force functions $F: \mathbb{R} \rightarrow \mathbb{R}$ such that the flow of X commutes with the flow of the vector field

$$
Y=x \frac{\partial}{\partial x}+v \frac{\partial}{\partial v}
$$

What can you say about the solutions of Newton's equations for these forces?
2. The standard Riemannian metric on S^{2} can be written as

$$
g=d \theta \otimes d \theta+\sin ^{2} \theta d \varphi \otimes d \varphi
$$

where (θ, φ) are the usual spherical coordinates, corresponding to the parameterization $\phi:(0, \pi) \times(0,2 \pi) \rightarrow S^{2} \subset \mathbb{R}^{3}$ given by

$$
\phi(\theta, \varphi)=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)
$$

(a) Compute the Christoffel symbols for the Levi-Civita connection in these coordinates.
(b) Show that the equator is the image of a geodesic. Are the parallels $\theta=\theta_{0} \neq \frac{\pi}{2}$ images of geodesics?
(c) Let $c:[0,2 \pi] \rightarrow S^{2}$ be the curve given in local coordinates by $c(t)=\left(\theta_{0}, t\right)$. Let V be a vector field parallel along c such that $V(0)=\frac{\partial}{\partial \theta}$ (note that $\frac{\partial}{\partial \theta}$ can be extended to the meridian $\varphi=0$ by continuity). Compute the angle by which V is rotated when it returns to the initial point, that is, compute the angle between $V(0)$ and $V(2 \pi)$. (Remark: The angle you have computed is exactly the angle by which the oscillation plane of the Foucault pendulum rotates during a day in a place at latitude $\frac{\pi}{2}-\theta_{0}$, as it tries to remain fixed with respect to the distant stars in a rotating Earth).
3. Let $(M,\langle\cdot, \cdot\rangle)$ be a Riemannian manifold with Levi-Civita connection ∇, and let

$$
\langle\langle\cdot, \cdot\rangle\rangle=e^{2 \rho}\langle\cdot, \cdot\rangle
$$

be a metric conformally related to $\langle\cdot, \cdot\rangle$, where $\rho \in C^{\infty}(M)$. Show that the Levi-Civita connection $\widetilde{\nabla}$ of $\langle\langle\cdot, \cdot\rangle\rangle$ is given by

$$
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+d \rho(X) Y+d \rho(Y) X-\langle X, Y\rangle \operatorname{grad} \rho
$$

for all $X, Y \in \mathfrak{X}(M)$, where the gradient is taken with respect to $\langle\cdot, \cdot\rangle$, that is, $\operatorname{grad} \rho$ is the vector field defined by

$$
\langle\operatorname{grad} \rho, X\rangle=d \rho(X)
$$

for all $X \in \mathfrak{X}(M)$. (Hint: Use the Koszul formula).
4. Let $(M,\langle\cdot, \cdot\rangle)$ be a Riemannian manifold. A curve $c: I \subset \mathbb{R} \rightarrow M$ is said to be a reparameterized geodesic if $c(t)=\gamma(s(t))$ for all $t \in I$, where $\gamma: J \subset \mathbb{R} \rightarrow M$ is a geodesic and $s: I \rightarrow J$ is a diffeomorphism (that is, a smooth bijection with smooth inverse). Show that c is a reparameterized geodesic if and only if it satisfies

$$
\frac{D \dot{c}}{d t}=f(t) \dot{c}
$$

for some differentiable function $f: I \rightarrow \mathbb{R}$.

