Geometric Mechanics 2022/2023 2nd Exam - 6 February 2023 - 15:30 Duration: 2 hours

1. The motions of a point particle moving freely on a frictionless platform which is spinning with angular velocity Ω , as seen in the platform's frame, are determined by the Lagrangian $L: T\mathbb{R}^2 \to \mathbb{R}$ given in the usual polar coordinates (r, θ) by

$$L(r, \theta, v^{r}, v^{\theta}) = \frac{1}{2} \left((v^{r})^{2} + r^{2} (v^{\theta})^{2} \right) + \Omega r^{2} v^{\theta} + \frac{1}{2} \Omega^{2} r^{2}.$$

- (3/20) (a) Write the equations of motion, and give an example of a solution.
- (2/20) (b) Compute the Legendre transformation and show that L is hyper-regular.
- (2/20) (c) Prove that the Hamiltonian $H: T^*\mathbb{R}^2 \to \mathbb{R}$ is completely integrable.
- (3/20) (d) The motion of an ice skate on the spinning platform can be modeled by enlarging the configuration space to $\mathbb{R}^2 \times S^1$ and adding the non-holonomic constraint

$$\Sigma = \ker \left(\sin \varphi \, dr - \cos \varphi \, r d\theta \right),$$

where φ is the angular coordinate on S^1 , together with a kinetic term of the form $\frac{I}{2}(v^{\varphi}+v^{\theta}+\Omega)^2$. Write the equations of motion assuming a perfect reaction force, and give an example of a solution.

- (4/20) 2. Consider an Euler top (that is, a free rigid body with a fixed point) whose principal moments of inertia satisfy $I_1 = I_2 \neq I_3$. Determine the stability of the rotations about each of its principal axes of inertia.
 - 3. The Lorentzian metric describing a (linearized, polarized) plane gravitational wave is

$$g = -dt \otimes dt + [1 + \varphi(t - z)] dx \otimes dx + [1 - \varphi(t - z)] dy \otimes dy + dz \otimes dz$$

where $\varphi : \mathbb{R} \to \mathbb{R}$ satisfies $|\varphi(u)| \ll 1$ for all $u \in \mathbb{R}$.

(3/20) (a) Show that the curves $c(t) = (t, x_0, y_0, z_0)$, for constant x_0, y_0 and z_0 , are timelike geodesics parameterized by proper time (thus corresponding to free-falling observers). (3/20)

(b) Suppose that an observer at $(x, y, z) = (x_0, y_0, z_0)$ sends a light signal towards another observer at $(x, y, z) = (x_0 + \Delta x, y_0, z_0)$, where it is reflected. Show that if $|\Delta x|$ is small enough then the proper time interval Δt measured by the first observer between the emission of the signal and the reception of the reflected signal is approximately

$$\Delta t \simeq \left[2 + \varphi(t_0 - z_0)\right] \Delta x,$$

where t_0 is the time of emission of the signal.

(Remark: The gravitational wave can then be detected by measuring the variation of Δt with the emission time t_0 ; this is the principle behind modern gravitational wave observatories such as LIGO).