# Geometric Mechanics <br> 2022/2023 <br> $1^{\text {st }}$ Exam - 24 January 2023-13:00 <br> Duration: 2 hours 

1. Consider the mechanical system formed by a point particle of $M>0$ moving along an horizontal line, from which a simple pendulum of length $l>0$ and mass $m>0$ has been suspended. This system is described by the Lagrangian $L: T\left(\mathbb{R} \times S^{1}\right) \rightarrow \mathbb{R}$ given by

$$
L\left(x, \theta, v^{x}, v^{\theta}\right)=\frac{1}{2}\left((M+m)\left(v^{x}\right)^{2}+2 m l \cos \theta v^{x} v^{\theta}+m l^{2}\left(v^{\theta}\right)^{2}\right)+m g l \cos \theta
$$

(where $x$ is the position of point particle and $\theta$ is the angle of the pendulum with respect to its stable equilibrium position).
(a) Write the equations of motion, and give an example of a non-constant solution.
(b) Compute the Legendre transformation and show that $L$ is hyper-regular.
(c) Prove that the Hamiltonian $H: T^{*}\left(\mathbb{R} \times S^{1}\right) \rightarrow \mathbb{R}$ is completely integrable.
(d) Consider the non-holonomic restriction given by the distribution

$$
\Sigma=\operatorname{ker}(d x-l d \theta),
$$

Write the equations of motion assuming a perfect reaction force, and give an example of a solution.
(Remark: This system models a wheel of radius $l$, whose center of mass is offset from its center, rolling on the horizontal line).
(4/20) 2. Let $(M, g,-d U)$ be a conservative mechanical system, and suppose that the vector field $X \in \mathfrak{X}(M)$ satisfies

$$
X \cdot U=0 \quad \text { and } \quad \mathcal{L}_{X} g=0 .
$$

Prove that any motion $c: I \subset \mathbb{R} \rightarrow M$ of the system admits the conserved quantity

$$
J(t)=g\left(\dot{c}(t), X_{c(t)}\right) .
$$

3. Recall that the restriction of the Schwarzschild metric to a radial line is given by

$$
g=-\left(1-\frac{2 m}{r}\right) d t \otimes d t+\left(1-\frac{2 m}{r}\right)^{-1} d r \otimes d r
$$

where $m>0$ where is the mass of the spherically symmetric object generating the field (we assume $r>2 m$ ).
(a) Show that $(t(r), r)$ is a reparameterized null geodesic for this metric if and only if

$$
\frac{d t}{d r}= \pm\left(1-\frac{2 m}{r}\right)^{-1}
$$

(b) Suppose that a stationary observer at $r=r_{1}$ sends a light signal towards $r=r_{0}<r_{1}$, where it is reflected. Show that if $r_{0} \gg 2 m$ then the proper time interval $\Delta \tau$ measured by the stationary observer at $r=r_{1}$ between the emission of the signal and the reception of the reflected signal is approximately

$$
\Delta \tau \simeq 2\left[\Delta r-m \frac{\Delta r}{r_{1}}+2 m \log \left(\frac{r_{1}}{r_{0}}\right)\right]
$$

where $\Delta r=r_{1}-r_{0}$.
(Remark: There are two corrections with respect to the Minkowski result $\Delta \tau=2 \Delta r$ : a negative term, corresponding to the gravitational time dilation, and a positive term, due to the geometry of the null geodesics, called the Shapiro delay; both have been measured in Solar System experiments by reflecting radar pulses off Venus).

