Geometric Mechanics

Homework 7

Due on November 11

1. Let $(M,\langle\cdot,\cdot\rangle)$ be a Riemannian manifold and $p,q\in M$. A curve of minimal length connecting p to q, with nonvanishing derivative, must be a critical point of the action determined by the Lagrangian $L:TM\setminus Z\to \mathbb{R}$ given by

$$L(v) = \langle v, v \rangle^{\frac{1}{2}}$$

 $(Z = \{0 \in T_pM : p \in M\}$ is the zero section).

- (a) Show that such a curve is a reparameterized geodesic. (Hint: Write $L(v) = (2K(v))^{\frac{1}{2}}$).
- (b) Compute the Hamiltonian function $H:TM\setminus Z\to \mathbb{R}$.
- 2. Consider the action of SO(3) on itself by left multiplication.
 - (a) Show that the infinitesimal action of $B\in\mathfrak{so}(3)$ is the vector field X^B given by

$$(X^B)_S = BS.$$

(b) Use the Noether Theorem to show that the angular momentum $p=SI\Omega$ of the free rigid body is constant.