Geometric Mechanics

Homework 11

Due on December 7

1. Let $(M,\langle\cdot,\cdot\rangle)$ be a compact Riemannian manifold. Show that for each normal ball $B\subset M$ and each T>0 there exist geodesics $c:\mathbb{R}\to M$ with $\|\dot{c}(t)\|=1$ such that $c(0)\in B$ and $c(t)\in B$ for some $t\geq T$.

(Remark: Actually, almost all geodesics with initial point in B satisfy this property; can you think of an example of a compact Riemannian manifold containing a geodesic that does not return to B?)

2. Recall that the Lagrange top is the mechanical system determined by the Lagrangian function $L: TSO(3) \to \mathbb{R}$ given in local coordinates by

$$L = \frac{I_1}{2} \left(\left(v^{\theta} \right)^2 + \left(v^{\varphi} \right)^2 \sin^2 \theta \right) + \frac{I_3}{2} \left(v^{\psi} + v^{\varphi} \cos \theta \right)^2 - Mgl \cos \theta,$$

where (θ, φ, ψ) are the Euler angles, M is the top's mass and l is the distance from the fixed point to the center of mass.

- (a) Compute the Legendre transformation, show that L is hyper-regular and write an expression in local coordinates for the Hamiltonian $H: T^*SO(3) \to \mathbb{R}$.
- (b) Prove that H is completely integrable.
- (c) Find all solutions with constant θ , $\dot{\varphi}$ and $\dot{\psi}$, and argue that they are stable for $|\dot{\varphi}| \ll |\dot{\psi}|$ if $|\dot{\psi}|$ is large enough.