Geometric Mechanics

Homework 1

Due on September 27

1. Let $(M,\langle\cdot,\cdot\rangle)$ be a Riemannian manifold with Levi-Civita connection ∇ , and let

$$\langle \langle \cdot, \cdot \rangle \rangle = e^{2\rho} \langle \cdot, \cdot \rangle$$

be a metric conformally related to $\langle \cdot, \cdot \rangle$, where $\rho \in C^{\infty}(M)$. Show that the Levi-Civita connection $\widetilde{\nabla}$ of $\langle \langle \cdot, \cdot \rangle \rangle$ is given by

$$\widetilde{\nabla}_X Y = \nabla_X Y + d\rho(X)Y + d\rho(Y)X - \langle X, Y \rangle \operatorname{grad} \rho$$

for all $X,Y\in\mathfrak{X}(M)$, where the gradient is taken with respect to $\langle\cdot,\cdot\rangle$, that is, $\operatorname{grad}\rho$ is the vector field defined by

$$\langle \operatorname{grad} \rho, X \rangle = d\rho(X)$$

for all $X \in \mathfrak{X}(M)$.

(Hint: Use the Koszul formula).

2. Let $(M,\langle\cdot,\cdot\rangle)$ be a Riemannian manifold. A curve $c:I\subset\mathbb{R}\to M$ is said to be a **reparameterized geodesic** if $c(t)=\gamma(s(t))$ for all $t\in I$, where $\gamma:J\subset\mathbb{R}\to M$ is a geodesic and $s:I\to J$ is a diffeomorphism. Show that c is a reparameterized geodesic if and only if it satisfies

$$\frac{D\dot{c}}{dt} = f(t)\,\dot{c}$$

for some differentiable function $f: I \to \mathbb{R}$.