Geometric Mechanics

Homework 10

Due on November 26

1. Recall that the upper half plane $H=\{(x,y)\in\mathbb{R}^2\mid y>0\}$ has a Lie group structure, given by the operation

$$(x,y)\cdot(z,w) := (yz + x, yw),$$

and that the hyperbolic plane corresponds to the left-invariant metric

$$g := \frac{1}{y^2} \left(dx \otimes dx + dy \otimes dy \right)$$

on H. The geodesics are therefore determined by the Hamiltonian function $K:T^*H\to\mathbb{R}$ given by

$$K(x, y, p_x, p_y) = \frac{y^2}{2} (p_x^2 + p_y^2).$$

- (a) Determine the lift to T^*H of the action of H on itself by left translation, and check that it preserves the Hamiltonian K.
- (b) Show that the functions

$$F(x, y, p_x, p_y) = yp_x$$
 and $G(x, y, p_x, p_y) = yp_y$

are also H-invariant, and use this to obtain the quotient Poisson structure on T^*H/H . Is this a symplectic manifold?

(c) Write an expression for the momentum map for the action of H on T^*H , and use it to obtain a nontrivial first integral I of the geodesic equations. Show that the projection on H of a geodesic for which K=E, $p_x=l$ and I=m satisfies the equation

$$l^2x^2 + l^2y^2 - 2lmx + m^2 = 2E.$$

Assuming $l \neq 0$, what are these curves?

2. Recall that the Euler top is the mechanical system determined by the Lagrangian function $L: TSO(3) \to \mathbb{R}$ given by

$$L = \frac{1}{2} \langle I\Omega, \Omega \rangle,$$

where Ω are the left-invariant coordinates on the fibers resulting from the identifications

$$T_SSO(3) = dL_S(\mathfrak{so}(3)) \cong \mathfrak{so}(3) \cong \mathbb{R}^3.$$

(a) Show that if we use the Euclidean inner product $\langle\cdot,\cdot\rangle$ to identify $(\mathbb{R}^3)^*$ with \mathbb{R}^3 then the Legendre transformation is written

$$P = I\Omega$$
,

where P are the corresponding left-invariant coordinates on $T^{*}SO(3)$.

- (b) Write the Hamilton equations on the reduced Poisson manifold $T^*SO(3)/SO(3) \cong \mathbb{R}^3$. What are the symplectic leaves? Give an example of a nonconstant Casimir function.
- (c) Compute the momentum map for the lift to $T^{*}SO(3)$ of the action of SO(3) on itself by left translation.