Geometric Mechanics

Homework 9

Due on November 23

1. Consider the symplectic structure on

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

determined by the usual volume form. Compute the Hamiltonian flow generated by the function H(x,y,z)=z.

2. Let (M,ω) be a symplectic manifold. Show that:

(a)
$$\omega=\sum_{i=1}^n dp_i\wedge dx^i$$
 if and only if $\{x^i,x^j\}=\{p_i,p_j\}=0$ and $\{p_i,x^j\}=\delta_{ij}$ for $i,j=1,\ldots,n$;

- (b) M is orientable;
- (c) If M is compact then ω cannot be exact;
- (d) The only sphere that admits a symplectic structure is S^2 .