Geometric Mechanics

Homework 10

Due on November 30

- 1. Let $(M, \{\cdot, \cdot\})$ be a Poisson manifold, B the Poisson bivector and (x^1, \dots, x^n) local coordinates on M. Show that:
 - (a) B can be written in these local coordinates as

$$B = \sum_{i,j=1}^{n} B^{ij} \frac{\partial}{\partial x^{i}} \otimes \frac{\partial}{\partial x^{j}},$$

where $B^{ij} = \{x^i, x^j\}$ for i, j = 1, ..., n;

(b) The Hamiltonian vector field generated by $F \in C^{\infty}(M)$ can be written as

$$X_F = \sum_{i,j=1}^p B^{ij} \frac{\partial F}{\partial x^i} \frac{\partial}{\partial x^j};$$

(c) The components of B must satisfy

$$\sum_{l=1}^{n} \left(B^{il} \frac{\partial B^{jk}}{\partial x^{l}} + B^{jl} \frac{\partial B^{ki}}{\partial x^{l}} + B^{kl} \frac{\partial B^{ij}}{\partial x^{l}} \right) = 0$$

for all i, j, k = 1, ..., n;

- (d) If $\{\cdot,\cdot\}$ arises from a symplectic form ω then $(B^{ij})=-(\omega_{ij})^{-1}$;
- (e) If B is nondegenerate then it arises from a symplectic form.
- 2. Recall that the Lagrangian $L: TSO(3) \to \mathbb{R}$ for the Euler top is given by

$$L = \frac{1}{2} \langle I\Omega, \Omega \rangle,$$

where Ω are the left-invariant coordinates on the fibers resulting from the usual identifications $T_SSO(3)=dL_S(\mathfrak{so}(3))\cong\mathfrak{so}(3)\cong\mathbb{R}^3$.

- (a) Show that if we use the Euclidean inner product $\langle \cdot, \cdot \rangle$ to identify $(\mathbb{R}^3)^*$ with \mathbb{R}^3 then the Legendre transformation is written $P = I\Omega$, where P are the corresponding left-invariant coordinates on $T^*SO(3)$. Determine the Hamiltonian $H: T^*SO(3) \to \mathbb{R}$.
- (b) The Poisson bracket on the reduced Poisson manifold $T^*SO(3)/SO(3) \cong \mathbb{R}^3$ (where the action is by the lift of the left translation) can be shown to be given by

$$\{F, G\}(P) = \langle P, \operatorname{grad} F \times \operatorname{grad} G \rangle.$$

(**Lie-Poisson reduction**). Determine X_H on the reduced manifold, and show that the equations $\dot{P} = X_H$ are precisely the Euler equations. What are the symplectic leaves?