Geometric Mechanics

Homework 1

Due on September 28

1. Let $(M,\langle\cdot,\cdot\rangle)$ be a Riemannian manifold with Levi-Civita connection ∇ and let $\langle\langle\cdot,\cdot\rangle\rangle=e^{2\rho}\langle\cdot,\cdot\rangle$ be a metric conformally related to $\langle\cdot,\cdot\rangle$ (where $\rho\in C^\infty(M)$). Show that the Levi-Civita connection $\widetilde{\nabla}$ of $\langle\langle\cdot,\cdot\rangle\rangle$ is given by

$$\widetilde{\nabla}_X Y = \nabla_X Y + d\rho(X)Y + d\rho(Y)X - \langle X, Y \rangle \operatorname{grad} \rho$$

for all $X,Y\in\mathfrak{X}(M)$, where the gradient is taken with respect to $\langle\cdot,\cdot\rangle$. (Hint: Use the Koszul formula).

2. Prove that a curve $c:I\subset\mathbb{R}\to M$ is a reparameterized geodesic of a Riemannian manifold $(M,\langle\cdot,\cdot\rangle)$ if and only if it satisfies

$$\frac{D\dot{c}}{dt} = f(t)\,\dot{c}$$

for some differentiable function $f: I \to \mathbb{R}$.

3. Recall that the hyperbolic plane is the upper half plane

$$H = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$$

with the Riemannian metric

$$\langle \cdot, \cdot \rangle = \frac{1}{v^2} \left(dx \otimes dx + dy \otimes dy \right)$$

Use the local coordinate expression of Newton's equation to compute the Christoffel symbols for the Levi-Civita connection of $(H,\langle\cdot,\cdot\rangle)$ in the coordinates (x,y).