Algebraic and Geometric Methods in Engineering and Physics

Homework 7

Due on November 12

1. Show that the following choices of unitary matrices determine representations of the group $D_4 \equiv \{e, r, r^2, r^3, s, sr, sr^2, sr^3\}$, and compute their characters:

(a)
$$\varphi_r^{(1)} = \varphi_s^{(1)} = 1$$
;

(b)
$$\varphi_r^{(2)} = 1$$
, $\varphi_s^{(2)} = -1$;

(c)
$$\varphi_r^{(3)} = -1$$
, $\varphi_s^{(3)} = 1$;

(d)
$$\varphi_r^{(4)} = \varphi_s^{(4)} = -1;$$

(e)
$$\varphi_r^{(5)}=egin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $\varphi_s^{(5)}=egin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$;

(f)
$$\psi_r = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
, $\psi_s = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$.

2. Using the characters computed in the previous question, show that:

(a)
$$\varphi^{(1)},\,\varphi^{(2)},\,\varphi^{(3)},\,\varphi^{(4)}$$
 and $\varphi^{(5)}$ are irreducible;

(b)
$$\psi \sim \varphi^{(1)} \oplus \varphi^{(3)} \oplus \varphi^{(5)}$$
.