Algebraic and Geometric Methods in Engineering and Physics

Homework 2

Due on September 24

1. If G and H are groups then it is easy to see that $G \times H$ with the binary operation

$$(q_1, h_1) \cdot (q_2, h_2) = (q_1 q_2, h_1 h_2)$$

is also a group. Show that:

- (a) $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not cyclic, and therefore is not isomorphic to \mathbb{Z}_4 .
- (b) $\mathbb{Z}_2 \times \mathbb{Z}_2$ and \mathbb{Z}_4 are the only groups of order 4 (up to isomorphism).
- (c) All groups of order ≤ 5 are abelian.
- 2. Consider the unitary group

$$U_n = \{ A \in GL_n(\mathbb{C}) : A^*A = I \},$$

and the special unitary group

$$SU_n = \{ A \in U_n : \det A = 1 \}.$$

Prove that SU_n is a normal subgroup of U_n , and also that $U_n/SU_n \cong S^1$.