Algebraic and Geometric Methods in Engineering and Physics

Homework 10

Due on December 3

- 1. A topological space (M, \mathcal{T}) is said to be **path-connected** if for every $x, y \in M$ there exists a continuous function $c:[0,1] \to M$ (a **path**) such that c(0)=x and c(1)=y. Show that if (M, \mathcal{T}) is path-connected then it is connected.
- 2. Consider the atlas for the 2-sphere $S^2=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2=1\}$ given by the local charts (U_N,π_N) and (U_S,π_S) , where $U_N=S^2\setminus\{(0,0,1)\}$, $U_S=S^2\setminus\{(0,0,-1)\}$ and

$$\pi_N(x,y,z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right),$$

$$\pi_S(x,y,z) = \left(\frac{x}{1+z}, \frac{y}{1+z}\right),$$

$$\pi_N^{-1}(s,t) = \left(\frac{2s}{1+s^2+t^2}, \frac{2t}{1+s^2+t^2}, \frac{s^2+t^2-1}{1+s^2+t^2}\right),$$

$$\pi_S^{-1}(u,v) = \left(\frac{2u}{1+u^2+v^2}, \frac{2v}{1+u^2+v^2}, \frac{1-u^2-v^2}{1+u^2+v^2}\right).$$

- (a) Show that these local charts are indeed compatible.
- (b) Prove that the function $f: S^2 \to \mathbb{R}$ given by f(x, y, z) = z is smooth.
- (c) Compute $\frac{\partial}{\partial s}|_{p}\cdot f$, where p=(1,0,0).