Algebraic and Geometric Methods in Engineering and Physics

Homework 6
Due on November 2

1. A molecule of methane $\left(\mathrm{CH}_{4}\right)$ consists of 4 hydrogen atoms placed at the vertices of a tetrahedron, bound to a central carbon atom. Hydrogen has three naturally occurring isotopes, namely protium (or hydrogen-1), deuterium (or hydrogen-2) and tritium (or hydrogen-3); carbon also has three naturally occurring isotopes, usually called carbon-12, carbon-13 and carbon-14. How many different kinds of molecules of methane are there? (Hint: The group of rotations that preserve the tetrahedron has order 12 ; besides the more obvious rotations, there are 3 rotations by 180° about the axes through the middle points of non-intersecting edges).
2. Show that

$$
\varphi_{r}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \varphi_{s}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

defines a unitary representation $\varphi: D_{4} \equiv\left\{e, r, r^{2}, r^{3}, s, s r, s r^{2}, s r^{3}\right\} \rightarrow G L_{2}(\mathbb{C})$. What are the invariant subspaces of this representation?

