Algebraic and Geometric Methods in Engineering and Physics

Homework 13

Due on January 11

1. Consider the 2×2 complex matrices

$$
\begin{aligned}
& \mathbf{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mathbf{i}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \\
& \mathbf{j}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \mathbf{k}=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right) .
\end{aligned}
$$

(a) Check that $\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i j k}=-\mathbf{1}$.
(b) Show that $\mathfrak{s u}_{2}=\operatorname{span}_{\mathbb{R}}\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$, and conclude that $\mathfrak{s u}_{2}$ is isomorphic to $\mathfrak{s o}_{3}(\mathbb{R})$.
(c) Consider the four-dimensional vector space $\mathbb{Q}=\operatorname{span}_{\mathbb{R}}\{\mathbf{1}, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ (also known as the quaternion algebra) with the inner product defined by taking $\{\mathbf{1}, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ to be an orthonormal basis. Show that

$$
S U_{2}=\{\mathbf{q} \in \mathbb{Q}:\|\mathbf{q}\|=1\}
$$

and conclude that $S U_{2}$ is simply connected.
(d) Show that if $\mathbf{n} \in \mathfrak{s u}_{2} \cap S U_{2}$ then

$$
\exp \left(\frac{\theta}{2} \mathbf{n}\right)=\cos \left(\frac{\theta}{2}\right) \mathbf{1}+\sin \left(\frac{\theta}{2}\right) \mathbf{n} \in S U_{2} .
$$

(Hint: Check that $\mathbf{n}^{2}=\mathbf{- 1}$).
(e) Show that if $\mathbf{n} \in \mathfrak{s u}_{2} \cap S U_{2}$ then the map

$$
\begin{aligned}
\mathfrak{s u}_{2} & \rightarrow \mathfrak{s u}_{2} \\
\mathbf{v} & \mapsto \exp \left(\frac{\theta}{2} \mathbf{n}\right) \mathbf{v} \exp \left(-\frac{\theta}{2} \mathbf{n}\right)
\end{aligned}
$$

is a rotation by an angle θ about the axis defined by \mathbf{n}.
(Hint: Start by proving that there exists an orthonormal basis $\{\mathbf{1}, \mathbf{m}, \mathbf{n}\}$ of $\mathfrak{s u}_{2}$ satisfying $\mathbf{l}^{2}=\mathbf{m}^{2}=\mathbf{n}^{2}=\mathbf{l m n}=-\mathbf{1}$).
(f) Show that there exists a surjective homomorphism $\Phi: S U_{2} \rightarrow S O_{3}(\mathbb{R})$ What is the kernel of Φ ?

