Algebraic and Geometric Methods in Engineering and Physics

Homework 13

Due on January 11

1. Consider the 2×2 complex matrices

$$\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix},$$
$$\mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathbf{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

- (a) Check that $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -\mathbf{1}$.
- (b) Show that $\mathfrak{su}_2 = \operatorname{span}_{\mathbb{R}} \{ \mathbf{i}, \mathbf{j}, \mathbf{k} \}$, and conclude that \mathfrak{su}_2 is isomorphic to $\mathfrak{so}_3(\mathbb{R})$.
- (c) Consider the four-dimensional vector space $\mathbb{Q} = \operatorname{span}_{\mathbb{R}} \{1, i, j, k\}$ (also known as the **quaternion algebra**) with the inner product defined by taking $\{1, i, j, k\}$ to be an orthonormal basis. Show that

$$SU_2 = \{ \mathbf{q} \in \mathbb{Q} : \|\mathbf{q}\| = 1 \},\$$

and conclude that SU_2 is simply connected.

(d) Show that if $\mathbf{n} \in \mathfrak{su}_2 \cap SU_2$ then

$$\exp\left(\frac{\theta}{2}\mathbf{n}\right) = \cos\left(\frac{\theta}{2}\right)\mathbf{1} + \sin\left(\frac{\theta}{2}\right)\mathbf{n} \in SU_2.$$

(Hint: Check that $n^2 = -1$).

(e) Show that if $\mathbf{n}\in\mathfrak{su}_2\cap SU_2$ then the map

$$\begin{array}{rcl} \mathfrak{su}_2 & \to & \mathfrak{su}_2 \\ \mathbf{v} & \mapsto & \exp\left(\frac{\theta}{2}\mathbf{n}\right)\mathbf{v}\exp\left(-\frac{\theta}{2}\mathbf{n}\right) \end{array}$$

is a rotation by an angle θ about the axis defined by \mathbf{n} .

(Hint: Start by proving that there exists an orthonormal basis $\{l, m, n\}$ of \mathfrak{su}_2 satisfying $l^2 = m^2 = n^2 = lmn = -1$).

(f) Show that there exists a surjective homomorphism $\Phi: SU_2 \to SO_3(\mathbb{R})$ What is the kernel of Φ ?