Algebraic and Geometric Methods in Engineering and Physics
 2022/2023
 $2^{\text {nd }}$ Exam - 9 February 2023-15:30
 Duration: 2 hours

(12/20)

1. Recall that the complex matrices

$$
\mathbf{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mathbf{i}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad \mathbf{j}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \mathbf{k}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

satisfy the quaternionic relations $\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i j k}=-\mathbf{1}$.
(a) Show that $G=\{\mathbf{1},-\mathbf{1}, \mathbf{i},-\mathbf{i}, \mathbf{j},-\mathbf{j}, \mathbf{k},-\mathbf{k}\}$ is a group under matrix multiplication.
(b) Show that $Z=\{\mathbf{1},-\mathbf{1}\}$ is a normal subgroup, and identify the quotient group G / Z.
(c) Is G isomorphic to the dihedral group D_{4} ?
(d) G acts naturally on \mathbb{C}^{2} by matrix multiplication. Show that this action is an irreducible representation of G.
(e) How many irreducible representations does G have? What are their dimensions?
(f) G also acts naturally on $\operatorname{Mat}_{2}(\mathbb{C})=\operatorname{span}_{\mathbb{C}}\{\mathbf{1}, \mathbf{i}, \mathbf{j}, \mathbf{k}\} \cong \mathbb{C}^{4}$ by matrix multiplication. Determine the decomposition of this representation into irreducible representations.
(4/20) 2. Suppose that 3 identical decks of 52 cards are combined into a big deck. How many different 3 card hands can be dealt out of the big deck?
3. Consider the family of subsets of \mathbb{C} given by

$$
\mathcal{T}=\left\{B_{r}(0): r>0\right\} \cup\{\varnothing, \mathbb{C}\} .
$$

(a) Show that \mathcal{T} is a topology on \mathbb{C}. Is this topology Hausdorff?
(b) Prove that any compact set for this topology must be bounded. Does it have to be closed with respect to the usual topology in \mathbb{C} ?
4. Consider the set

$$
\begin{equation*}
S^{1}=\{z \in \mathbb{C}:|z|=1\} . \tag{2/20}
\end{equation*}
$$

(a) Prove that S^{1} is a Lie group (for the usual multiplication of complex numbers).
(b) Determine all Lie group homomorphisms $\Phi: \mathbb{R} \rightarrow S^{1}$ (where the group operation in \mathbb{R} is the sum).

