Algebraic and Geometric Methods in Engineering and Physics
 2022/2023
 $1^{\text {st }}$ Exam - 26 January 2023-15:30
 Duration: 2 hours

(9/20)

1. Consider the set

$$
G=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{Mat}_{2}\left(\mathbb{Z}_{2}\right): a d-b c=1\right\}
$$

with the operation of matrix multiplication.
(a) Show that G is a nonabelian group of order 6 .
(b) Consider the action of G on $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ by matrix multiplication. Determine wether this action is effective, free and/or transitive.
(c) By considering the restriction of this action to the set $\left\{v_{1}, v_{2}, v_{3}\right\}$, where

$$
v_{1}=(1,0), \quad v_{2}=(0,1), \quad v_{3}=(1,1)
$$

prove that G is isomorphic to S_{3}.
(4/20) 2. Recall that the dihedral group D_{n} is the finite group of order $2 n$ determined by two generators r and s satisfying the relations

$$
r^{n}=e, \quad s^{2}=e, \quad r s=s r^{-1}
$$

where e is the identity.
(a) Prove that D_{n} has exactly two non-equivalent 1-dimensional representations if n is odd, and four non-equivalent 1-dimensional representations if n is even.
(b) How many non-equivalent irreducible representations does D_{5} have? What are their dimensions?
$(3 / 20)$ 3. Consider the topological spaces

$$
S^{1}=\{z \in \mathbb{C}:|z|=1\} \quad \text { and } \quad I=[0,1]
$$

both equiped with the usual (subspace) topology.
(a) Show that $S^{1} \backslash\{1\}$ is homeomorphic to \mathbb{R}.
(b) Prove that $I \backslash\left\{\frac{1}{2}\right\}$ is disconnected.
(c) Conclude that S^{1} and I are not homeomorphic.
(4/20) 4. Consider the Lie algebra

$$
\mathfrak{g}=\left\{\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right) \in \operatorname{Mat}_{2}(\mathbb{C}): a, b \in \mathbb{C}\right\}
$$

where the Lie bracket is the commutator
(a) Is this Lie algebra simple?
(b) Find a Lie group G such that \mathfrak{g} is its Lie algebra.
(c) Prove that there are only two complex Lie algebras of dimension 2 (up to isomorphism).

