Algebraic and Geometric Methods in Engineering and Physics 2020/2021

2nd Exam - 2 February 2021 - 11:30 Duration: 2 hours

(8/20) **1.** Consider the finite group G formed by the matrices

$$R_{0} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \quad R_{1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}; \quad R_{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}; \quad R_{3} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix};$$

$$S_{0} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}; \quad S_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \quad S_{2} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; \quad S_{3} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix},$$

under matrix multiplication.

- (a) Show that G is not abelian, but admits subgroups isomorphic to \mathbb{Z}_2 and to \mathbb{Z}_4 .
- (b) Show that $\det: G \to \mathbb{R}^*$ is a group homomorphism, find a normal subgroup $N \subset G$ and identify the group G/N.
- (c) The elements $g \in G$ can be naturally identified with linear maps $g: \mathbb{C}^2 \to \mathbb{C}^2$. Compute the character of the corresponding representation, and use it to prove that this representation does not contain a copy of the trivial representation.
- (d) Show that this representation is irreducible, and determine the number of (equivalence classes of) irreducible representations of G.
- (4/20) **2.** Recall that the Chinese remainder theorem states that if $m, n \in \mathbb{N}$ are coprime then the map $\mathbb{Z}_{mn} \ni [k] \mapsto ([k], [k]) \in \mathbb{Z}_m \times \mathbb{Z}_n$ is a group isomorphism. Use this theorem to show that if m and n are coprime then the system

$$\begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$$

has infinitely many solutions $x \in \mathbb{Z}$, differing by multiples of mn. What happens when m and n are not coprime?

(4/20) **3.** Show that the function $d: \mathbb{C} \times \mathbb{C} \to [0, +\infty)$ given by

$$d(z,w) = \begin{cases} |z| + |w| & \text{if } z \neq w \\ 0 & \text{if } z = w \end{cases}$$

is a distance function on \mathbb{C} , and sketch $B_{\frac{3}{2}}(i).$

(4/20) **4.** Determine the weights of the representation of highest weight (0,1) of the complex semisimple Lie algebra \mathfrak{g}_2 , whose Cartan matrix is

$$A = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}.$$

Assuming that each weight space has multiplicity 1, what is the dimension of this representation?