Riemannian Geometry

Extra Homework 1

Optional, but must be handed in before the make up test for credit

Let (θ, φ) be the usual spherical coordinates on S^2 , corresponding to the parameterization $\phi: (0, \pi) \times (-\pi, \pi) \to \mathbb{R}^3$ given by

$$\phi(\theta, \varphi) = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta).$$

Let S^2_* be the open subset of S^2 covered by these coordinates (that is, S^2 minus the poles and a meridian). Show that:

1. The **cylindrical projection** $\pi_c: S^2_* \to (-1,1) \times (-\pi,\pi)$, given in spherical coordinates by $\pi_c(\theta,\varphi) = (\cos\theta,\varphi)$

preserves areas.

2. The Mercator projection $\pi_m: S^2_* \to (-\infty, \infty) \times (-\pi, \pi)$, given in spherical coordinates by

$$\pi_m(\theta, \varphi) = \left(\log\left(\cot\left(\frac{\theta}{2}\right)\right), \varphi\right)$$

is conformal (that is, preserves angles).

3. The stereographic projection $\pi_s:S^2_*\to\mathbb{C}$, given by

$$\pi_s(x, y, z) = \frac{x + iy}{1 - z},$$

is written is spherical coordinates as

$$\pi_s(\theta, \varphi) = \cot\left(\frac{\theta}{2}\right) e^{i\varphi}.$$

- 4. The Mercator projection is the complex logarithm of the stereographic projection.
- 5. If the curve $c: \mathbb{R} \to S^2_*$ satisfies

$$\pi_m(c(t)) = t (\cos \psi, \sin \psi) \mod (0, 2\pi)$$

then c is a **loxodrome**, that is, a curve of constant bearing (and ψ is the constant angle between c and the north).

6. The stereographic projection maps the loxodrome c to the **logarithmic spiral**

$$\pi_s(c(t)) = e^{t\cos\psi} \left(\cos(t\sin\psi), \sin(t\sin\psi)\right).$$

7. The total length of the loxodrome \boldsymbol{c} is

$$l(c) = \frac{\pi}{|\cos \psi|}.$$

1