Riemannian Geometry

Homework 9

Due on November 17

1. Consider the usual local coordinates (θ,φ) in $S^2\subset\mathbb{R}^3$ defined by the parameterization $\phi:(0,\pi)\times(0,2\pi)\to\mathbb{R}^3$ given by

$$\phi(\theta, \varphi) = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta).$$

- (a) Using these coordinates, determine the expression of the Riemannian metric induced on S^2 by the Euclidean metric of \mathbb{R}^3 .
- (b) Compute the Christoffel symbols for the Levi-Civita connection in these coordinates.
- (c) Show that the equator is the image of a geodesic.
- (d) Show that any rotation about an axis through the origin in \mathbb{R}^3 induces an isometry of S^2 .
- (e) Show that the geodesics of S^2 traverse great circles.
- (f) Find a **geodesic triangle** (i.e. a triangle whose sides are images of geodesics) whose internal angles add up to $\frac{3\pi}{2}$.
- (g) Let $c:\mathbb{R}\to S^2$ be given by $c(t)=(\sin\theta_0\cos t,\sin\theta_0\sin t,\cos\theta_0)$, where $\theta_0\in\left(0,\frac{\pi}{2}\right)$ (therefore c is not a geodesic). Let V be a vector field parallel along c such that $V(0)=\frac{\partial}{\partial\theta}\left(\frac{\partial}{\partial\theta}$ is well defined at $(\sin\theta_0,0,\cos\theta_0)$ by continuity). Compute the angle by which V is rotated when it returns to the initial point. (Remark: The angle you have computed is exactly the angle by which the oscillation plane of the Foucault pendulum rotates during a day in a place at latitude $\frac{\pi}{2}-\theta_0$, as it tries to remain fixed with respect to the stars in a rotating Earth).
- (h) Use this result to prove that no open set $U\subset S^2$ is isometric to an open set $W\subset \mathbb{R}^2$ with the Euclidean metric.
- (i) Given a geodesic $c: \mathbb{R} \to \mathbb{R}^2$ of \mathbb{R}^2 with the Euclidean metric and a point $p \notin c(\mathbb{R})$, there exists a unique geodesic $\widetilde{c}: \mathbb{R} \to \mathbb{R}^2$ (up to reparameterization) such that $p \in \widetilde{c}(\mathbb{R})$ and $c(\mathbb{R}) \cap \widetilde{c}(\mathbb{R}) = \emptyset$ (parallel postulate). Is this true in S^2 ?
- 2. **(Optional)** We introduce in \mathbb{R}^3 , with the usual Euclidean metric $\langle \cdot, \cdot \rangle$, the connection ∇ defined in Cartesian coordinates (x^1, x^2, x^3) by

$$\Gamma^{i}_{jk} = \omega \varepsilon_{ijk},$$

where $\omega:\mathbb{R}^3 \to \mathbb{R}$ is a smooth function and

$$\varepsilon_{ijk} = \left\{ \begin{array}{ll} +1 & \text{if } (i,j,k) \text{ is an even permutation of } (1,2,3) \\ -1 & \text{if } (i,j,k) \text{ is an odd permutation of } (1,2,3) \\ 0 & \text{otherwise.} \end{array} \right.$$

Show that:

- (a) ∇ is compatible with $\langle \cdot, \cdot \rangle$;
- (b) the geodesics of ∇ are straight lines;
- (c) the torsion of ∇ is not zero in all points where $\omega \neq 0$ (therefore ∇ is not the Levi-Civita connection unless $\omega \equiv 0$);
- (d) the parallel transport equation is

$$\dot{V}^{i} + \sum_{i,k=1}^{3} \omega \varepsilon_{ijk} \dot{x}^{j} V^{k} = 0 \Leftrightarrow \dot{V} + \omega (\dot{x} \times V) = 0$$

(where \times is the cross product in \mathbb{R}^3); therefore, a vector parallel along a straight line rotates about it with angular velocity $-\omega \dot{x}$.

- 3. **(Optional)** Let $(M, \langle \cdot, \cdot \rangle)$ be a Riemannian manifold with Levi-Civita connection $\widetilde{\nabla}$, and let $(N, \langle \langle \cdot, \cdot \rangle \rangle)$ be a submanifold with the induced metric and Levi-Civita connection ∇ .
 - (a) Show that

$$\nabla_X Y = \left(\widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}\right)^\top$$

for all $X,Y\in\mathfrak{X}(N)$, where $\widetilde{X},\widetilde{Y}$ are any extensions of X,Y to $\mathfrak{X}(M)$ and $^{\top}:TM|_{N}\to TN$ is the orthogonal projection.

- (b) Use this result to indicate curves that are, and curves that are not, geodesics of the following surfaces in \mathbb{R}^3 :
 - i. the sphere S^2 ;
 - ii. the torus of revolution;
 - iii. the surface of a cone;
 - iv. a general surface of revolution.
- (c) Show that if two surfaces in \mathbb{R}^3 are tangent along a curve, then the parallel transport of vectors along this curve in both surfaces coincides.
- (d) Use this result to compute the angle $\Delta\theta$ by which a vector V is rotated when it is parallel transported along a circle on the sphere. (Hint: Consider the cone which is tangent to the sphere along the circle; notice that the cone minus a ray through the vertex is isometric to an open set of the Euclidean plane).