Riemannian Geometry

Homework 6

Due on October 27

1. Given the differential forms

$$\alpha = xdx + ydy \in \Omega^{1}(\mathbb{R}^{2})$$

$$\beta = -\frac{y}{x^{2} + y^{2}}dx + \frac{x}{x^{2} + y^{2}}dy \in \Omega^{1}(\mathbb{R}^{2} \setminus \{0\})$$

$$\omega = e^{xz}dx + x\cos zdy + y^{2}dz \in \Omega^{1}(\mathbb{R}^{3})$$

$$\eta = xdx \wedge dy - zdx \wedge dz + xyzdy \wedge dz \in \Omega^{2}(\mathbb{R}^{3})$$

$$\zeta = dx^{1} \wedge dx^{2} + \dots + dx^{2n-1} \wedge dx^{2n} \in \Omega^{2}(\mathbb{R}^{2n})$$

and the smooth maps

$$f: \mathbb{R} \to \mathbb{R}^2 \qquad g: (0, +\infty) \times (0, 2\pi) \to \mathbb{R}^2 \qquad h: \mathbb{R}^3 \to \mathbb{R}^3$$

$$f(t) = (t, t^2) \qquad g(r, \theta) = (r\cos\theta, r\sin\theta) \qquad h(u, v, w) = (uv, vw, uw)$$

compute:

- (a) $\alpha \wedge \beta$, $\omega \wedge \eta$, $\eta \wedge \eta$;
- (b) $\zeta \wedge \ldots \wedge \zeta$ (wedge product with n factors);
- (c) $d\alpha, d\beta, d\omega, d\eta, d\zeta$.
- (d) $f^*\alpha, g^*\alpha, g^*\beta, h^*\eta$.
- 2. Given the vector isomorphisms $i_1:\mathfrak{X}(\mathbb{R}^3)\to\Omega^1(\mathbb{R}^3)$ and $i_2:\mathfrak{X}(\mathbb{R}^3)\to\Omega^2(\mathbb{R}^3)$ defined by

$$\begin{split} i_1\left(X^1\frac{\partial}{\partial x} + X^2\frac{\partial}{\partial y} + X^3\frac{\partial}{\partial z}\right) &= X^1dx + X^2dy + X^3dz \\ i_2\left(X^1\frac{\partial}{\partial x} + X^2\frac{\partial}{\partial y} + X^3\frac{\partial}{\partial z}\right) &= X^1dy \wedge dz + X^2dz \wedge dx + X^3dx \wedge dy \end{split}$$

show that for $f \in C^{\infty}(\mathbb{R}^3)$ and $X,Y \in \mathfrak{X}(\mathbb{R}^3)$:

- (a) $df = i_1(\nabla f)$, where $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$ is the **gradient** of f;
- (b) $d(i_1(X)) = i_2(\nabla \times X)$, where $\nabla \times X = \left(\frac{\partial X^3}{\partial y} \frac{\partial X^2}{\partial z}, \frac{\partial X^1}{\partial z} \frac{\partial X^3}{\partial x}, \frac{\partial X^2}{\partial x} \frac{\partial X^1}{\partial y}\right)$ is the **curl** of X;

- (c) $d(i_2(X)) = (\nabla \cdot X) dx \wedge dy \wedge dz$, where $\nabla \cdot X = \frac{\partial X^1}{\partial x} + \frac{\partial X^2}{\partial x} + \frac{\partial X^3}{\partial z}$ is the **divergence** of X;
- (d) d(df) = 0 implies $\nabla \times (\nabla f) = 0$;
- (e) $d(d(i_1(X))) = 0$ implies $\nabla \cdot (\nabla \times X) = 0$;
- (f) $\nabla \times (fX) = (\nabla f) \times X + f(\nabla \times X)$;
- (g) $\nabla \cdot (X \times Y) = (\nabla \times X) \cdot Y X \cdot (\nabla \times Y)$.
- 3. **(Optional)** A k-form ω is called **closed** if $d\omega=0$. If it exists a (k-1)-form β such that $\omega=d\beta$ then ω is called **exact**. Note that every exact form is closed. Let Z^k be the set of all closed k-forms on M and define a relation between forms on Z^k as follows: $\alpha \sim \beta$ if and only if they differ by an exact form, that is, if $\beta-\alpha=d\theta$ for some (k-1)-form θ .
 - (a) Show that this relation is an equivalence relation.
 - (b) Let $H^k(M)$ be the corresponding set of equivalence classes (called the k-dimensional **de Rham cohomology space** of M). Show that addition and scalar multiplication of forms define indeed a vector space structure on $H^k(M)$.
 - (c) Let $f: M \to N$ be a smooth map. Show that:
 - i. the pull-back f^* carries closed forms to closed forms and exact forms to exact forms;
 - ii. if $\alpha \sim \beta$ on N then $f^*\alpha \sim f^*\beta$ on M;
 - iii. f^* induces a linear map on cohomology $f^\sharp: H^k(N) \to H^k(M)$ naturally defined by $f^\sharp[\omega] = [f^*\omega]$;
 - iv. if $g: L \to M$ is another smooth map, then $(f \circ g)^{\sharp} = g^{\sharp} \circ f^{\sharp}$.
 - (d) Show that the dimension of $H^0(M)$ is equal to the number of connected components of M.
 - (e) Show that $H^k(M) = 0$ for every $k > \dim M$.
- 4. **(Optional)** Let M be a manifold of dimension n, let U be an open subset of \mathbb{R}^n and let ω be a k-form on $\mathbb{R} \times U$. Writing ω as

$$\omega = dt \wedge \sum_{I} a_{I} dx^{I} + \sum_{J} b_{J} dx^{J},$$

where $I=(i_1,\ldots,i_{k-1})$ and $J=(j_1,\ldots,j_k)$ are increasing index sequences, (x^1,\ldots,x^n) are coordinates in U and t is the coordinate in \mathbb{R} , consider the operator \mathcal{Q} defined by

$$Q(\omega)_{(t,x)} = \sum_{I} \left(\int_{t_0}^t a_I ds \right) dx^I,$$

which transforms k-forms ω in $\mathbb{R} \times U$ into (k-1)-forms.

(a) Let $f:V\to U$ be a diffeomorphism between open subsets of \mathbb{R}^n . Show that the induced diffeomorphism $\widetilde{f}:=\operatorname{id}\times f:\mathbb{R}\times V\to\mathbb{R}\times U$ satisfies

$$\widetilde{f}^* \circ \mathcal{Q} = \mathcal{Q} \circ \widetilde{f}^*.$$

- (b) Using (a), construct an operator $\mathcal Q$ which carries k-forms on $\mathbb R \times M$ into (k-1)-forms and, for any diffeomorphism $f:M\to N$, the induced diffeomorphism $\widetilde f:\operatorname{id}\times f:\mathbb R\times M\to\mathbb R\times N$ satisfies $\widetilde f^*\circ\mathcal Q=\mathcal Q\circ\widetilde f^*$. Show that this operator is linear.
- (c) Considering the operator $\mathcal Q$ defined in (b) and the inclusion $i_{t_0}: M \to \mathbb R \times M$ of M at the "level" t_0 , defined by $i_{t_0}(p) = (t_0,p)$, show that $\omega \pi^*i_{t_0}^*\omega = d\mathcal Q\omega + \mathcal Qd\omega$, where $\pi: \mathbb R \times M \to M$ is the projection on M.
- (d) Show that the maps $\pi^{\sharp}: H^k(M) \to H^k(\mathbb{R} \times M)$ and $i_{t_0}^{\sharp}: H^k(\mathbb{R} \times M) \to H(M)$ are inverses of each other (and so $H^k(M)$ is isomorphic to $H^k(\mathbb{R} \times M)$).
- (e) Use (d) to show that, for k > 0 and n > 0, every closed k-form in \mathbb{R}^n is exact, that is, $H^k(\mathbb{R}^n) = 0$ if k > 0.
- (f) Use (d) to show that, if $f,g:M\to N$ are two **smoothly homotopic maps** between smooth manifolds (meaning that there exists a smooth map $H:\mathbb{R}\times M\to N$ such that $H(t_0,p)=f(p)$ and $H(t_1,p)=g(p)$ for some fixed $t_0,t_1\in\mathbb{R}$), then $f^\sharp=g^\sharp$.
- (g) We say that M is **contractible** if the identity map $\mathrm{id}:M\to M$ is smoothly homotopic to a constant map. Show that \mathbb{R}^n is contractible.
- (h) Let M be a contractible smooth manifold. Show that every closed form on M is exact, that is, $H^k(M) = 0$ for all k > 0 (**Poincaré Lemma**).