Riemannian Geometry

Homework 3

Due on October 6

1. Let $X,Y\in\mathfrak{X}(\mathbb{R}^3)$ be the vector fields defined by

$$X = y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \qquad \text{ and } \qquad Y = z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z},$$

where (x, y, z) are the usual Cartesian coordinates.

- (a) Compute the Lie bracket [X, Y].
- (b) Compute the flows ψ_t and ϕ_t of X and Y.
- (c) Check explicitly that $\psi_{\frac{\pi}{2}} \circ \phi_{\frac{\pi}{2}} \neq \phi_{\frac{\pi}{2}} \circ \psi_{\frac{\pi}{2}}$.
- 2. Let $f: M \to N$ be a diffeomorphism between smooth manifolds. Show that $f_*[X,Y] = [f_*X, f_*Y]$ for every $X, Y \in \mathfrak{X}(M)$.
- 3. **(Optional)** Let $X,Y \in \mathfrak{X}(M)$ be two complete vector fields with flows ψ,ϕ . Show that:
 - (a) given a diffeomorphism $f: M \to M$, we have $f_*X = X$ if and only if $f \circ \psi_t = \psi_t \circ f$ for all $t \in \mathbb{R}$:
 - (b) $\psi_t \circ \phi_s = \phi_s \circ \psi_t$ for all $s, t \in \mathbb{R}$ if and only if [X, Y] = 0.
- 4. (Optional) For two vector fields $X,Y\in\mathfrak{X}(M)$ we define the Lie derivative of Y in the direction of X as

$$L_XY := \frac{d}{dt}((\psi_{-t})_*Y)_{|_{t=0}},$$

where $\{\psi_t\}_{t\in I}$ is the local flow of X. Show that:

- (a) $L_X Y = [X, Y];$
- (b) $L_X[Y, Z] = [L_XY, Z] + [Y, L_XZ]$, for $X, Y, Z \in \mathfrak{X}(M)$;
- (c) $L_X \circ L_Y L_Y \circ L_X = L_{[X,Y]}$.
- 5. (Optional) Let $f:M\to N$ be a differentiable map between smooth manifolds and consider submanifolds $V\subset M$ and $W\subset N$. Show that if $f(V)\subset W$ then $f:V\to W$ is also a differentiable map.

1