Riemannian Geometry

Homework 2

Due on September 29

1. Let M be a smooth manifold, $p \in M$ and $v \in T_pM$. Show that if v can be written as $v = \sum_{i=1}^n a^i (\frac{\partial}{\partial x^i})_p$ and $v = \sum_{i=1}^n b^i (\frac{\partial}{\partial y^i})_p$ for two basis associated to two different local charts around p, then

$$b^{j} = \sum_{i=1}^{n} \left(\frac{\partial y^{j}}{\partial x^{i}}(x(p)) \right) a^{i}.$$

- 2. Let $f:M\to N$ and $g:N\to P$ be two differentiable maps. Show that:
 - (a) $g \circ f : M \to P$ is also differentiable;
 - (b) $(d(g \circ f))_p = (dg)_{f(p)} \circ (df)_p$ for any $p \in M$.
- 3. Consider the n-sphere

$$S^{n} = \left\{ x \in \mathbb{R}^{n+1} : (x^{1})^{2} + \dots + (x^{n+1})^{2} = 1 \right\}.$$

Show that:

- (a) S^n is an n-dimensional submanifold of \mathbb{R}^{n+1} ;
- (b) $T_xS^n=\left\{v\in\mathbb{R}^{n+1}:\langle x,v\rangle=0\right\}$, where $\langle\cdot,\cdot\rangle$ is the usual inner product on \mathbb{R}^n and we are using the natural identification $T_x\mathbb{R}^n\cong\mathbb{R}^n$.
- 4. **(Optional)** Let $f: M \to N$ be an injective immersion. Show that if M is compact then f is an embedding.
- 5. (Optional) Show that the map $f: \mathbb{R}P^2 \to \mathbb{R}^4$ given by

$$f([x,y,z]) = \frac{1}{x^2 + y^2 + z^2}(xz, yz, xy, x^2 - y^2)$$

is an embedding.

6. (Optional) Show that the orthogonal group

$$O(n) = \{ A \in \mathcal{M}_{n \times n} \mid A^t A = I \}$$

is an $rac{n(n-1)}{2}$ -dimensional submanifold of $\mathcal{M}_{n imes n}\cong \mathbb{R}^{n^2}.$

7. **(Optional)** Show that the boundary ∂Q of the cube $Q = [-1,1] \times [-1,1] \times [-1,1]$ is **not** a submanifold of \mathbb{R}^3 .

1