Riemannian Geometry

Homework 13

Due on December 15

- 1. Use the second fundamental form to compute the Gauss curvature of the following surfaces in \mathbb{R}^3 :
 - (a) The paraboloid $z = \frac{1}{2}(x^2 + y^2)$.
 - (b) The saddle surface z = xy.
- 2. Let $(M, \langle \cdot, \cdot \rangle)$ be a Riemannian manifold. A submanifold $N \subset M$ is said to be **totally geodesic** if the the geodesics of N are geodesics of M. Show that:
 - (a) N is totally geodesic if and only if $B \equiv 0$, where B is the second fundamental form of N.
 - (b) If N is the set of fixed points of an isometry then N is totally geodesic. Use this result to give examples of totally geodesic submanifolds of \mathbb{R}^n , S^n and H^n .
- 3. **(Optional)** Let $(M,\langle\cdot,\cdot\rangle)$ be a Riemannian manifold, p a point in M and Π a section of T_pM . For $B_{\varepsilon}(p):=\exp_p(B_{\varepsilon}(0))$ a normal ball around p consider the set $N_p:=\exp_p(B_{\varepsilon}(0)\cap\Pi)$. Show that:
 - (a) The set N_p is a 2-dimensional submanifold of M formed by the segments of geodesics in $B_{\varepsilon}(p)$ which are tangent to Π at p.
 - (b) If in N_p we use the metric induced by the metric in M, the sectional curvature $K^M(\Pi)$ is equal to the Gauss curvature of the 2-manifold N_p .
- 4. **(Optional)** If $N \subset \mathbb{R}^{n+1}$ is an oriented hypersurface we define its **Gauss map** $g: N \to S^n$ to be the map such that g(p) is the unit normal vector compatible with the orientation. Since g(p) is normal to T_pN , we can identify the tangent spaces T_pN and $T_{g(p)}S^n$ to obtain a well-defined map $(dg)_p: T_pN \to T_pN$. Show that:
 - (a) $(dg)_p = -S_{g(p)}$, where $S_{g(p)}: T_pN \to T_pN$ is the symmetric linear operator such that $\langle\langle S_{g(p)}X_p, Y_p\rangle\rangle = \langle B(X_p, Y_p), g(p)\rangle$ (here B is the second fundamental form, $\langle\cdot,\cdot\rangle$ is the Euclidean inner product and $\langle\langle\cdot,\cdot\rangle\rangle$ is the induced metric).
 - (b) If the Gauss curvature K(p) of N at p does not vanish then

$$|K(p)| = \lim_{D \to p} \frac{\operatorname{vol}(g(D))}{\operatorname{vol}(D)},$$

where D is a neighborhood of p in N whose diameter tends to zero.