Lie Groups and Lie Algebras

Summaries

1 Lie Groups

1.1 Preliminaries

- 1. A **matrix group** is a closed subgroup of $GL(n, \mathbb{R})$.
- 2. Two Lie groups are said to be **locally isomorphic** if there exist neighborhoods of the identity $U \subset G$ and $V \subset H$ and a homeomorphism $f: U \to V$ such that f(xy) = f(x)f(y) whenever $x, y, xy \in U$.
- 3. Any matrix group is a Lie group. Any Lie group is locally isomorphic to a matrix group.
- 4. A **homogeneous space** is a differentiable manifold X where a Lie group G acts transitively. If

$$H = \{ g \in G \mid gx_0 = x_0 \}$$

is the **isotropy subgroup** of $x_0 \in X$ then $X \cong G/H$ as differentiable manifolds with a G-action

- 5. The isometry group of a Riemannian manifold is a Lie group.
- 6. A **symmetric space** is a Riemannian manifold X such that for each point $x \in X$ there exists an isometry $f_x: X \to X$ such that $f_x(x) = x$ and $(df_x)_x = -\operatorname{id}$. Any symmetric space is complete and homogeneous.
- 7. Any invertible matrix $g \in GL(n,\mathbb{R})$ has a unique **polar decomposition**, i.e. a unique factorization g = pu, where p is a symmetric positive-definite matrix and $u \in O(n)$.
- 8. The space of **flags** in \mathbb{C}^n is the homogeneous space

$$GL(n,\mathbb{C})/B \cong U(n)/T$$

(where $B \subset GL(n,\mathbb{C})$ is the subgroup of upper triangular invertible matrices and $T \subset U(n)$ is the subgroup of diagonal unitary matrices), and can be identified with the set of sequences of subspaces

$$E_1 \subset \ldots \subset E_n = \mathbb{C}^n$$

with $\dim E_k = k$.

9. Any element $g \in GL(n,\mathbb{C})$ can be factorized $g=n\pi b$, where n belongs to the subgroup $N \subset GL(n,\mathbb{C})$ of upper triangular matrices with 1's on the diagonal, π is a permutation matrix and $b \in B$. This decomposition is unique if n is chosen in $N_{\pi} = \pi \widetilde{N} \pi^{-1}$, where $\widetilde{N} \subset GL(n,\mathbb{C})$ is the subgroup of lower triangular matrices with 1's on the diagonal.

- 10. The orbits of N on the flag manifold $GL(n,\mathbb{C})/B$ decompose it into n! cells C_{π} , with $C_{\pi} \cong N_{\pi} \cong C^{l_{\pi}}$ (where l_{π} is the length of the permutation π).
- 11. Almost all $g \in GL(n,\mathbb{C})$ have a unique factorization $g = \widetilde{n}b$, where $\widetilde{n} \in \widetilde{N}$ and $b \in B$.
- 12. If G is a compact Lie group then one can always choose a **maximal torus**, i.e. a subgroup $T \subset G$ isomorphic to a torus $S^1 \times \ldots \times S^1$ which is maximal. If G is connected then any element of G is conjugate to an element of T, and more generally any connected abelian subgroup of G is conjugate to a subgroup of T. In particular any two maximal tori are conjugate.
- 13. Lefschetz fixed point theorem: If X is a CW-complex with $\chi(X) \neq 0$ and $f: X \to X$ is a continuous map which is homotopic to the identity then f has a fixed point.

1.2 Lie Theory

- 1. A **Lie group** is a smooth manifold G together with a smooth map $G \times G \to G$ which makes it a group.
- 2. If G is a Lie group then the map $x \mapsto x^{-1}$ is smooth.
- 3. If G is a Lie group and $g \in G$ then the maps $L_g: G \to G$ and $R_g: G \to G$ defined by $L_g(x) = gx$ and $R_g(x) = xg$ are called the **left** and **right translations**. They are both diffeomorphisms.
- 4. Any **closed** subgroup of a Lie group is a Lie group.
- 5. The **Lie algebra** of a Lie group G is $\mathfrak{g} = T_1G$.
- 6. A **Lie group homomorphism** is a smooth homomorphism between Lie groups.
- 7. A 1-parameter subgroup of a Lie group G is a Lie group homomorphism $f: \mathbb{R} \to G$.
- 8. For any Lie group G there is a 1-1 correspondence between its Lie algebra \mathfrak{g} and the homomorphisms $f:\mathbb{R}\to G$.
- 9. The **exponential map** on a Lie group G is the map $\exp : \mathfrak{g} \to G$ such that $\exp(A) = f(1)$, where $f : \mathbb{R} \to G$ is the unique 1-parameter subgroup such that $\dot{f}(0) = A$.
- 10. The exponential map is surjective on any compact Lie group.
- 11. The exponential map $\exp: \mathfrak{g} \to G$ is a local diffeomorphism at $0 \in \mathfrak{g}$.
- 12. The **Lie bracket** on the Lie algebra \mathfrak{g} of a Lie group G is the antisymmetric bilinear map $[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$ such that

$$\exp(A) \exp(B) = \exp(A + B + \frac{1}{2}[A, B] + \ldots)$$

for $A, B \in \mathfrak{g}$ sufficiently small.

13. The Campbell-Baker-Hausdorff series

$$\log(\exp(A)\exp(B)) = A + B + \frac{1}{2}[A, B] + \frac{1}{12}[A, [A, B]] + \frac{1}{12}[B, [B, A]] + \dots$$

converges in a neighbourhood of the origin, and can be expressed entirely in terms of $[\cdot,\cdot]$.

- 14. For matrix groups, [A, B] = AB BA.
- 15. An abstract Lie algebra is a vector space V together with an antisymmetric bilinear map $[\cdot,\cdot]:V\times V\to V$ satisfying the **Jacobi identity**

$$[[A, B], C] + [[B, C], A] + [[C, A], B] = 0.$$

- 16. If G is a Lie group then $(\mathfrak{g}, [\cdot, \cdot])$ is a Lie algebra.
- 17. A Lie algebra homomorphism between Lie algebras $(V, [\cdot, \cdot])$ and $(W, [\cdot, \cdot])$ is a linear map $F: V \to W$ such that F([A, B]) = [F(A), F(B)] for all $A, B \in V$.
- 18. The functor taking G to $\mathfrak{g} = T_1G$ is an equivalence of categories between the category of connected simply connected Lie groups and the category of Lie algebras.

1.3 Representations

- 1. A **representation** of a Lie group G is a continuous action of G on a complex Banach space V by linear isomorphisms.
- 2. If R is a representation of S^1 on V then $V = \bigoplus_{n \in \mathbb{Z}} V_n$, where

$$V_n = \{ \xi \in V \mid R_\alpha \xi = e^{-in\alpha} \xi \text{ for all } \alpha \in S^1 \}$$

- and $\hat{\oplus}$ means that each V_n is a closed subspace of V and each $\xi \in V$ has a unique convergent expansion $\xi = \sum_{n \in \mathbb{Z}} \xi_n$ with $\xi_n \in V_n$.
- 3. A representation is called **irreducible** if it has no closed G-invariant subspaces except 0 and V.
- 4. A representation is called **unitary** if V is a Hilbert space and

$$\langle g\xi, g\eta \rangle = \langle \xi, \eta \rangle$$

for all $g \in G$ and $\xi, \eta \in V$.

- 5. Finite-dimensional unitary representations are always direct sums of irreducibes.
- 6. Schur's Lemma: If V_1 and V_2 are finite-dimensional representations of G then any G-map $f:V_1\to V_2$ (i.e. linear map such that $f(g\xi)=gf(\xi)$ for all $g\in G$ and $\xi\in V_1$) is either zero or an isomorphism. Moreover, if $V_1=V_2$ then $f=\lambda 1$ for some $\lambda\in\mathbb{C}$.
- 7. If G is a compact Lie group and V is a Banach space then there exists a unique continuous linear map

$$\int_G : C(G, V) \to V$$

(where $C(G,V) = \{\text{continuous maps } f: G \rightarrow V\}$) such that

- (a) $\int_G f(g)dg = v$ if f(g) = v for all $g \in G$;
- (b) $\int_G f(gh)dg = \int_G f(hg)dg = \int_G f(g)dg$ for all $h \in G$.
- 8. In a Lie group G with a finite number of connected components there always exist maximal compact subgroups. If K is one of them then any compact subgroup of G is conjugate to a subgroup of K (in particular any two maximal compact subgroups are conjugate). Moreover, G is homeomorphic to $K \times \mathbb{R}^m$ for some M.
- 9. **Peter-Weyl Theorem Version 1:** If G is a compact Lie group and V is a representation then the isotypical part V_P (i.e. the sum of all copies of P inside V) is a closed subspace of V and

$$V = \bigoplus_{P} V_{P}$$

where P runs through the finite dimensional irreducible representations of G.

- 10. All irreducible representations of a compact Lie group are finite-dimensional.
- 11. **Peter-Weyl Theorem Version 2:** Any compact Lie group is isomorphic to a subgroup of U(n). In particular it is a matrix group.
- 12. A **representative function** on a compact Lie group G is a function $f_{M;\xi,\eta}:G\to\mathbb{C}$ of the form

$$f_{M:\xi,\eta}(g) = \langle \xi, g\eta \rangle,$$

where M is a finite-dimensional unitary representation of G and $\xi, \eta \in M$. The representative functions form a subalgebra $C_{\mathsf{alg}}(G)$ of the algebra C(G) of continuous functions on G.

- 13. **Peter-Weyl Theorem Version 3:** if G is a compact Lie group then $C_{\mathsf{alg}}(G)$ is a dense subring of C(G) for the topology of uniform convergence.
- 14. (a) If G is a compact Lie group then there is an isomorphism of representations of $G \times G$

$$\bigoplus \overline{P} \otimes P \to C_{\mathsf{alg}}(G)$$

given by

$$\eta \otimes \xi \mapsto f_{P;\xi,\eta}$$

where P runs through the irreducible representations of G and $G \times G$ acts on $C_{alg}(G)$ by left and right translation.

- (b) Each $\overline{P} \otimes P$ is an irreducible representation of $G \times G$.
- (c) The isomorphism above takes the inner product defined by

$$\langle \eta_1 \otimes \xi_1, \eta_2 \otimes \xi_2 \rangle = \frac{1}{\dim P} \overline{\langle \eta_1, \eta_2 \rangle} \langle \xi_1, \xi_2 \rangle$$

on $\overline{P} \otimes P$ to the usual L^2 inner product on $C_{\mathsf{alg}}(G)$.

15. The **character** of a finite-dimensional representation V of a Lie group G is the function $\chi_V:G\to\mathbb{C}$ given by

$$\chi_V(g) = \operatorname{tr}(g_V)$$

where $g_V:V\to V$ is the action of g on V.

- 16. (a) A finite-dimensional representation of a compact Lie group G is determined up to isomorphism by its character.
 - (b) If P and Q are irreducible representations then

$$\langle \chi_P, \chi_Q \rangle = \begin{cases} 1 \text{ if } P \cong Q \\ 0 \text{ otherwise} \end{cases}$$

- (c) The characters of the irreducible representations form an orthonormal basis for the Hilbert space of **class functions** on G (i.e. functions $f:G\to\mathbb{C}$ such that $f(ghg^{-1})=f(h)$).
- 17. If $H \subset G$ is a Lie subgroup of a compact Lie group G then

$$C(G/H) \cong \widehat{\bigoplus} \overline{P} \otimes P^H$$

as G-spaces, where P runs through the irreducible representations of G and P^H is the subspace of P which is fixed by the action of H.

- 18. $C(S^{n-1}) = \hat{\bigoplus}_{k \in \mathbb{N}_0} H_k$, where H_k is the space of **spherical harmonics of degree** k on S^{n-1} , i.e. restrictions of harmonic polynomials in $\mathbb{C}[x_1,\ldots,x_n]$ which are homogeneous of degree k. The spaces H_k give the irreducible representations of O(n), and are eigenspaces of the Laplacian corresponding to the eigenvalue -k(k+n-1).
- 19. The Lie algebra $M_{n\times n}(\mathbb{C})$ of $GL(n,\mathbb{C})$ is the complexification of the Lie algebra of U(n).
- 20. The algebra $C_{\mathsf{alg}}(U(n))$ of representative functions on U(n) is precisely the algebra $\mathbb{C}[a_{ij}, \Delta^{-1}]$ of polynomial functions on $GL(n,\mathbb{C})$, where $\Delta = \det(a_{ij})$.
- 21. Every representation of U(n) is the restriction of a unique holomorphic representation of $GL(n,\mathbb{C})$.
- 22. If $V=\mathbb{C}^n$ is the fundamental representation of U(n) then $V^{\otimes k}=\bigoplus_Q Q\otimes V_Q$, where Q runs through the irreducible representations of the symmetric group S_k and $V_Q=\operatorname{Hom}_{S_k}(Q;V^{\otimes k})$ are the homomorphisms equivariant under S_k . In fact this decomposition is an isomorphism of representations of $S_k\times U(n)$.
- 23. Weyl's Theorem: V_Q is an irreducible representation of U(n) and, up to multiplication by a power of the determinant, all irreducible representations of U(n) arise in this way for some $k \in \mathbb{N}$. Moreover, all irreducible representations of S_k occur in $V^{\otimes k}$ if $n \geq k$.

2 Lie Algebras

2.1 Introduction

- 1. A **Lie algebra** is a vector space $\mathfrak g$ over a field $\mathbb F$ on which a multiplication $[\cdot,\cdot]:\mathfrak g\times\mathfrak g\to\mathfrak g$ is defined satisfying:
 - (a) [x, y] is linear in x and y;
 - (b) [x,x]=0 for all $x \in \mathfrak{g}$;

- (c) [[x,y],z] + [[y,z],x] + [[z,x],y] = 0 for all $x,y,z \in \mathfrak{g}$ (Jacobi identity).
- 2. The multiplication $[\cdot, \cdot]$ is anticommutative but not associative (hence the brackets).
- 3. If A is an associative algebra (i.e. a vector space with a bilinear associative multiplication $(x,y)\mapsto xy$) then [A] is the Lie algebra $(A,[\cdot,\cdot])$, where [x,y]=xy-yx.
- 4. A **homomorphism** of Lie algebras $\mathfrak{g}_1, \mathfrak{g}_2$ over \mathbb{F} is linear map $\theta: \mathfrak{g}_1 \to \mathfrak{g}_2$ such that $\theta([x,y]) = [\theta(x), \theta(y)]$. An **isomorphism** is a bijective homomorphism.
- 5. If \mathfrak{g} is a Lie algebra and $\mathfrak{h}, \mathfrak{k} \subset \mathfrak{g}$ are subspaces then $[\mathfrak{h}, \mathfrak{k}] = \operatorname{span}\{[x, y] \mid x \in \mathfrak{h}, y \in \mathfrak{k}\}$. We have $[\mathfrak{h}, \mathfrak{k}] = [\mathfrak{k}, \mathfrak{h}]$.
- 6. A **Lie subalgebra** of a Lie algebra \mathfrak{g} is a subspace $\mathfrak{h} \subset \mathfrak{g}$ such that $[\mathfrak{h},\mathfrak{h}] \subset \mathfrak{h}$. An **ideal** of \mathfrak{g} is a subspace $\mathfrak{h} \subset \mathfrak{g}$ such that $[\mathfrak{h},\mathfrak{g}] \subset \mathfrak{h}$.
- 7. If \mathfrak{h} is an ideal of a Lie algebra \mathfrak{g} then $\mathfrak{g}/\mathfrak{h}$ is a Lie algebra for the product $[x+\mathfrak{h},y+\mathfrak{h}]=[x,y]+\mathfrak{h}$, and the quotient map is a Lie algebra homomorphism.
- 8. If $\theta: \mathfrak{g}_1 \to \mathfrak{g}_2$ is a Lie algebra homomorphism then $\mathfrak{k} = \ker(\theta)$ is an ideal of \mathfrak{g}_1 . If θ is surjective then $\mathfrak{g}_1/\mathfrak{k}$ is idomorphic to \mathfrak{g}_2 .
- 9. We define $\mathfrak{gl}(n,\mathbb{F}) = [M_{n \times n}(\mathbb{F})].$
- 10. Let $\mathfrak g$ be a Lie algebra over $\mathbb F$. A **representation** of $\mathfrak g$ is a homomorphism $\rho:\mathfrak g\to\mathfrak g\mathfrak l(n,\mathbb F)$ for some $n\in\mathbb N$. Two representations ρ and ρ' of degree n are called **equivalent** if there is a nonsingular matrix $T\in M_{n\times n}(\mathbb F)$ such that $\rho'(x)=T^{-1}\rho(x)T$ for all $x\in\mathfrak g$.
- 11. A **left** \mathfrak{g} -module is a vector space V over \mathbb{F} with a multiplication $\mathfrak{g} \times V \ni (x,v) \mapsto xv \in V$ satisfying:
 - (a) xv is linear in x and in v;
 - (b) [x,y]v = x(yv) y(xv) for all $x,y \in \mathfrak{g}$ and $v \in V$.

A choice of basis on a finite-dimensional \mathfrak{g} -module gives a representation of \mathfrak{g} ; a different choice of basis gives an equivalent representation.

- 12. If $U \subset V$ is a subspace and $\mathfrak{h} \subset \mathfrak{g}$ is a subalgebra then $\mathfrak{h}U = \mathrm{span}\{xu \mid x \in \mathfrak{h}, u \in U\}$. U is a **submodule** of V if $\mathfrak{g}U \subset U$. A \mathfrak{g} -module is called **irreducible** if V has no submodules other than 0 and V.
- 13. \mathfrak{g} is a \mathfrak{g} -module under the multiplication $(x,y)\mapsto [x,y]$ (called the **adjoint representation**).
- 14. A Lie algebra \mathfrak{g} is called **abelian** if $[\mathfrak{g},\mathfrak{g}]=0$.
- 15. If $\mathfrak{h}, \mathfrak{k} \subset \mathfrak{g}$ are ideals then so is $[\mathfrak{h}, \mathfrak{k}]$.
- 16. A Lie algebra g is called **nilpotent** if the descending series of ideals

$$\mathfrak{g} = \mathfrak{g}^1 \supset \mathfrak{g}^2 \supset \mathfrak{g}^3 \supset \dots$$

defined by

$$\mathfrak{g}^{n+1} = [\mathfrak{g}^n, \mathfrak{g}^n]$$

is such that $\mathfrak{g}^i=0$ for some $i\in\mathbb{N}$.

17. A Lie algebra g is called **soluble** if the descending series of ideals

$$\mathfrak{g} = \mathfrak{g}^{(0)} \supset \mathfrak{g}^{(1)} \supset \mathfrak{g}^{(2)} \supset \dots$$

defined by

$$\mathfrak{g}^{(n+1)} = [\mathfrak{g}^{(n)}, \mathfrak{g}^{(n)}]$$

is such that $\mathfrak{g}^{(i)} = 0$ for some $i \in \mathbb{N}$.

- 18. Every abelian Lie algebra is nilpotent. Every nilpotent algebra is soluble.
- 19. A Lie algebra is called **simple** if it has no ideals other than 0 and \mathfrak{g} .
- 20. $\mathfrak{sl}(n,\mathbb{C})$ is simple.

2.2 Simple Lie algebras over \mathbb{C}

1. Let $\mathfrak g$ be a Lie algebra and $\mathfrak h\subset \mathfrak g$ a Lie subalgebra. The **idealizer** of $\mathfrak h$ is

$$I(\mathfrak{h}) = \{ x \in \mathfrak{g} \mid [y, x] \in \mathfrak{h} \text{ for all } y \in \mathfrak{h} \},$$

i.e. it is the largest subalgebra of $\mathfrak g$ in which $\mathfrak h$ is an ideal.

- 2. Let $\mathfrak g$ be a finite-dimensional Lie algebra over $\mathbb C$. A subalgebra $\mathfrak h \subset \mathfrak g$ is called a **Cartan** subalgebra if $\mathfrak h$ is nilpotent and $I(\mathfrak h)=\mathfrak h$.
- 3. Every finite-dimensional Lie algebra $\mathfrak g$ over $\mathbb C$ has a Cartan subalgebra. Moreover, given any two Cartan subalgebras $\mathfrak h_1,\mathfrak h_2\subset\mathfrak g$ there exists an automorphism θ of $\mathfrak g$ such that $\theta(\mathfrak h_1)=\mathfrak h_2$.
- 4. If g is simple then its Cartan subalgebra is abelian.
- 5. Let $\mathfrak g$ be a finite-dimensional simple Lie algebra over $\mathbb C$ and let $\mathfrak h$ be a Cartan subalgebra of $\mathfrak g$. Then

$$\mathfrak{g}=\mathfrak{h}\oplus\sum_{lpha}\mathbb{C}e_{lpha}$$

as \mathfrak{h} -modules (Cartan decomposition of \mathfrak{g} with respect to \mathfrak{h}).

6. The set $\Phi \subset \mathfrak{h}^* = \mathsf{Hom}(\mathfrak{h},\mathbb{C})$ of linear functionals such that

$$[x, e_{\alpha}] = \alpha(x)e_{\alpha}$$

is called the set of **roots** of \mathfrak{g} with respect to \mathfrak{h} .

- 7. The set Φ of roots of \mathfrak{g} with respect to \mathfrak{h} satisfies:
 - (a) $\Phi = -\Phi$;
 - (b) span $\Phi = \mathfrak{h}^*$.
- 8. There exists a subset $\Pi \subset \Phi$ (fundamental roots) such that:
 - (a) Π is linearly independent;
 - (b) Each $\alpha \in \Phi$ is a linear combination of elements in Π with coefficitents in either \mathbb{Z}_0^+ or \mathbb{Z}_0^- .

- 9. We define $\mathfrak{h}_{\mathbb{R}}^* = \operatorname{span}_{\mathbb{R}} \Pi = \operatorname{span}_{\mathbb{R}} \Phi$. The **rank** of \mathfrak{g} is $\dim_{\mathbb{C}} \mathfrak{h} = \dim_{\mathbb{R}} \mathfrak{h}_{\mathbb{R}}^*$.
- 10. The **Killing form** on $\mathfrak g$ is the symmetric bilinear map $\langle \cdot, \cdot \rangle : \mathfrak g \times \mathfrak g \to \mathbb C$ given by

$$\langle x, y \rangle = \operatorname{tr}(\operatorname{ad}_x \operatorname{ad}_y),$$

where $ad_x : \mathfrak{g} \to \mathfrak{g}$ is the linear map defined by $ad_x(y) = [x, y]$.

- 11. If $\mathfrak g$ is a finite-dimensional nontrivial simple Lie algebra over $\mathbb C$ then the Killing form is nondegenerate.
- 12. Let $\mathfrak g$ be a finite-dimensional nontrivial simple Lie algebra over $\mathbb C$ and $\mathfrak h$ its Cartan subalgebra.
 - (a) The restriction of the Killing form to h is nondegenerate;
 - (b) The restriction of the corresponding form on \mathfrak{h}^* to $\mathfrak{h}_\mathbb{R}^*$ is an inner product.
- 13. Let \mathfrak{g} be a finite-dimensional nontrivial simple Lie algebra over \mathbb{C} , \mathfrak{h} its Cartan subalgebra and $\Phi \subset \mathfrak{h}^*$ its root system. The group

$$W = \langle s_{\alpha} \rangle_{\alpha \in \Phi}$$

is called the **Weyl group** of \mathfrak{g} , where $s_{\alpha}:\mathfrak{h}_{\mathbb{R}}^{*}\to\mathfrak{h}_{\mathbb{R}}^{*}$ is the linear isometry

$$s_{\alpha}(\lambda) = \lambda - 2 \frac{\langle \alpha, \lambda \rangle}{\langle \alpha, \alpha \rangle} \alpha$$

(reflection on the hyperplane orthogonal to α).

- 14. The Weyl group W satisfies:
 - (a) $W(\Phi) = \Phi$;
 - (b) $\Phi = W(\Pi)$;
 - (c) $W = \langle s_{\alpha} \rangle_{\alpha \in \Phi}$

(where $\Pi \subset \Phi$ is a set of fundamental roots).

15. The **Cartan matrix** associated to a set of fundamental roots $\Pi = \{\alpha_1, \dots, \alpha_l\}$ is the matrix $A = (A_{ij})_{i,j=1}^l$ defined by

$$A_{ij} = \frac{2\langle \alpha_i, \alpha_j \rangle}{\langle \alpha_i, \alpha_i \rangle}.$$

We have $A_{ii} = 2$ and $A_{ij} \in \mathbb{Z}_0^-$ for $i \neq j$.

- 16. The quantities $n_{ij} = A_{ij}A_{ji}$ satisfy $n_{ij} \in \mathbb{Z}_0^+$ and $n_{ij} \in \{0, 1, 2, 3\}$ for $i \neq j$.
- 17. The **Dynkin diagram** of a finite-dimensional nontrivial simple Lie algebra $\mathfrak g$ over $\mathbb C$ is a graph with vertices labelled $1,\ldots,l$ in bijective correspondence with a set of fundamental roots such that the vertices i,j with $i\neq j$ are joined by n_{ij} edges. The Dynkin diagram is uniquely determined by $\mathfrak g$.
- 18. Let Δ be the Dynkin diagram of a finite-dimensional nontrivial simple Lie algebra $\mathfrak g$ over $\mathbb C$. Then

- (a) Δ is connected;
- (b) Any two vertices are joined by at most 3 edges;
- (c) The quadratic form

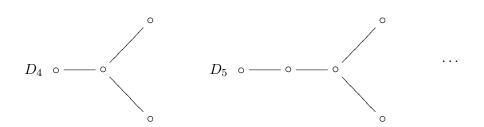
$$Q(x_1, ..., x_l) = 2\sum_{i=1}^{l} x_i^2 - \sum_{i \neq j} \sqrt{n_{ij}} x_i x_j$$

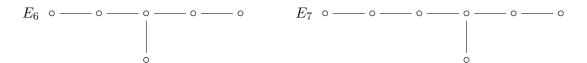
is positive definite.

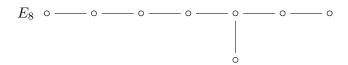
- 19. Consider graphs Δ with the following properties:
 - (a) Δ is connected;
 - (b) The number of edges joining any two vertices is 0, 1, 2 or 3;
 - (c) The quadratic form Q determined by Δ is positive definite.

The Δ must be one of the graphs in the following list:

$$A_1 \circ A_2 \circ --- \circ A_3 \circ --- \circ \cdots \circ \dots$$





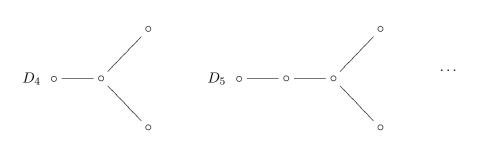


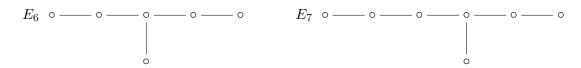
$$F_4 \circ \longrightarrow \circ \longrightarrow \circ G_2 \circ \longrightarrow \circ$$

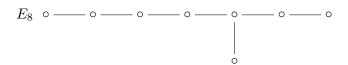
20. Let $\mathfrak g$ be a finite-dimensional simple nontrivial Lie algebra over $\mathbb C$. Then the Cartan matrix of $\mathfrak g$ is given by one of the following Dynkin diagrams (where the arrow points towards the shorter root):

$$B_2 \circ === \circ \qquad \qquad B_3 \circ ---- \circ = > = \circ \qquad \qquad B_4 \circ ---- \circ --- \circ = > = \circ \qquad \qquad \ldots$$

$$C_3 \circ \cdots \circ = \Leftarrow \circ \qquad C_4 \circ \cdots \circ = \Leftarrow \circ \qquad \dots$$







$$F_4 \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \qquad G_2 \circ \longrightarrow \circ$$

Moreover, each of these Cartan matrices corresponds to a unique Lie algebra (up to isomorphism).

21.
$$A_l = \mathfrak{sl}(l+1,\mathbb{C})$$
 and dim $A_l = l(l+2)$ $(l \ge 1)$;

$$B_l = \mathfrak{so}(2l+1,\mathbb{C}) \text{ and } \dim B_l = l(2l+1) \ (l \ge 2);$$

$$C_l = \mathfrak{sp}(2l, \mathbb{C})$$
 and $\dim C_l = l(2l+1)$ $(l \geq 3)$;

$$D_l = \mathfrak{so}(2l, \mathbb{C})$$
 and dim $D_l = l(2l-1)$ $(l \ge 4)$;

$$\dim G_2 = 14;$$

$$\dim F_4 = 52;$$

$$\dim E_6 = 78;$$

$$\dim E_7 = 133;$$

$$\dim E_8 = 248.$$

2.3 Representations of simple Lie algebras

1. Let

$$T(\mathfrak{g}) = \mathbb{C}1 \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \oplus (\mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}) \oplus \dots$$

be the tensor algebra of $\mathfrak g$ and let $I\subset T(\mathfrak g)$ be the two-sided ideal generated by

$${x \otimes y - y \otimes x - [x, y] \mid x, y \in \mathfrak{g}}.$$

The universal enveloping algebra of \mathfrak{g} is $U(\mathfrak{g}) = T(\mathfrak{g})/I$.

2. **Poincaré-Birkhoff-Witt Theorem:** If $\{x_1, \ldots, x_n\}$ is a basis for $\mathfrak g$ then

$$\{x_1^{i_1} \dots x_n^{i_n} \mid i_1, \dots, i_n \in \mathbb{Z}_0^+\}$$

is a basis for $U(\mathfrak{g})$.

- 3. $U(\mathfrak{g})$ -modules coincide with \mathfrak{g} -modules.
- 4. Let $\mathfrak g$ be a finite-dimensional nontrivial simple Lie algebra over $\mathbb C$ and $\mathfrak h$, its Cartan subalgebra and $\Phi=\{\alpha_1,\ldots,\alpha_l\}$ a set of fundamental roots. The images h_i of $\frac{2\alpha_i}{\langle\alpha_i,\alpha_i\rangle}$ under the isomorphism $\mathfrak h^*\cong\mathfrak h$ given by the Killing form are called the **fundamental coroots**.
- 5. The **Verma module with highest weight** $\lambda \in \mathfrak{h}^*$ is the \mathfrak{g} -module obtained by taking the quotient

$$M(\lambda) = U(\mathfrak{g})/J(\lambda)$$

where

$$J(\lambda) = \sum_{\alpha \in \Phi^+} U(\mathfrak{g})e_{\alpha} + \sum_{i=1}^{l} (h_i - \lambda(h_i)1) \subset U(\mathfrak{g})$$

and

$$\mathfrak{g} = \mathfrak{h} \oplus \sum_{\alpha \in \Phi} \mathbb{C}e_{\alpha}$$

as h-modules.

- 6. Regarded as an \mathfrak{h} -module, $M(\lambda)$ decomposes as a sum of 1-dimensional \mathfrak{h} -modules. The corresponding 1-dimensional representations $\mu \in \mathfrak{h}^*$ are called the **weights** of $M(\lambda)$.
- 7. All the weights of $M(\lambda)$ are of the form $\lambda n_1 \alpha_1 \ldots n_l \alpha_l$, where $n_1, \ldots, n_l \in \mathbb{Z}_0^+$.
- 8. $M(\lambda)$ has a unique maximal g-submodule $K(\lambda)$, so that $L(\lambda) = M(\lambda)/K(\lambda)$ is an irreducible g-module.
- 9. $\dim L(\lambda)$ is finite if and only if $\lambda(h_i) \in \mathbb{Z}_0^+$ for $i = 1, \ldots, l$.
- 10. $\lambda \in \mathfrak{h}^*$ is called **integral** if $\lambda(h_i) \in \mathbb{Z}$ for $i=1,\ldots,l$, and **dominant integral** if $\lambda(h_i) \in \mathbb{Z}_0^+$ for $i=1,\ldots,l$. In terms of the dual basis $\{\omega_1,\ldots,\omega_l\}$ of $\{h_1,\ldots,h_l\}$ (called the **fundamental weights**), integral means a linear combination with integer coefficients, and dominant integral means a linear combination with nonnegative integer coefficients.
- 11. Every finite-dimensional irreducible \mathfrak{g} -module is of the form $L(\lambda)$ for some dominant integral $\lambda \in \mathfrak{h}^*$.
- 12. For $\lambda \in \mathfrak{h}^*$ dominant integral and $\mu \in \mathfrak{h}^*$ define

$$L(\lambda)_{\mu} = \{ v \in L(\lambda) \mid xv = \mu(x)v \text{ for all } x \in \mathfrak{h} \}.$$

The values of $\mu \in \mathfrak{h}^*$ for which $L(\lambda)_{\mu} \neq 0$ are called the **weights** of $L(\lambda)$. $L(\lambda)_{\mu} \neq 0$ is called the μ -weight eigenspace, and $\dim L(\lambda)_{\mu}$ is called the **multiplicity** of the weight μ in $L(\lambda)$.

13. The weights μ of $L(\lambda)$ are integral.

14. Let $X \cong \mathbb{Z}^l$ be the set of integral weights, and $e: X \to e(X)$ an isomorphism such that $e(\lambda_1 + \lambda_2) = e(\lambda_1)e(\lambda_2)$. Let $\mathbb{Z}e(X)$ be the free abelian group on e(X). Then $\mathbb{Z}e(X)$ is an integral domain where the sum is the group operation on $\mathbb{Z}e(X)$ and the product is the group operation on X extended to $\mathbb{Z}e(X)$. The **character** of $L(\lambda)$ is

$$\operatorname{char} L(\lambda) = \sum_{\mu \in X} \dim L(\lambda)_{\mu} e(\mu) \in \mathbb{Z}e(X).$$

15. Weyl's character formula:

$$\operatorname{char} L(\lambda) = \frac{\sum_{w \in W} (\det w) e(w(\lambda + \rho))}{\sum_{w \in W} (\det w) e(w(\rho))}$$

where W is the Weyl group, $\rho = \omega_1 + \ldots + \omega_l = \frac{1}{2} \sum_{\alpha \in \Phi^+ \alpha}$ and the equality holds in the field of fractions of $\mathbb{Z}e(X)$.

16. Weyl's dimension formula:

$$\dim L(\lambda) = \frac{\prod_{\alpha \in \Phi^+} \langle \alpha, \lambda + \rho \rangle}{\prod_{\alpha \in \Phi^+} \langle \alpha, \lambda + \rho \rangle} = \prod_{\alpha \in \Phi^+} \frac{\sum_{i=1}^l k_i w_i (m_i + 1)}{\sum_{i=1}^l k_i w_i},$$

where

$$\alpha = \sum_{i=1}^{l} k_i \alpha_i, \qquad \lambda = \sum_{i=1}^{l} m_i \omega_i$$

and $w_i = 1, 2, 3$ is such that

$$\langle \alpha_i, \alpha_i \rangle = w_i \langle \alpha_0, \alpha_0 \rangle$$

for $\alpha_0 \in \Pi$ a fundamental root of minimal length.