Differential Geometry of Curves and Surfaces

Homework 9

Due on November 30

1. Recall that the hyperbolic plane is the open domain $H=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ with the Riemannian metric

$$
d s^{2}=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right) .
$$

Show that:
(a) This Riemannian metric can be written as

$$
d s^{2}=\left(\theta^{1}\right)^{2}+\left(\theta^{2}\right)^{2},
$$

where

$$
\theta^{1}=\frac{1}{y} d x, \quad \theta^{2}=\frac{1}{y} d y .
$$

(b) The orthonornormal frame $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ dual to $\left\{\theta^{1}, \theta^{2}\right\}$ is given by

$$
\mathbf{e}_{1}=y \frac{\partial}{\partial x}, \quad \mathbf{e}_{2}=y \frac{\partial}{\partial y} .
$$

(c) The connection form associated to $\left\{\theta^{1}, \theta^{2}\right\}$ is

$$
\omega_{2}^{1}=-\frac{1}{y} d x .
$$

(d) The Gauss curvature of the hyperbolic plane is $K(x, y)=-1$.
(e) The vector field

$$
\mathbf{V}(t)=\cos t \frac{\partial}{\partial x}-\sin t \frac{\partial}{\partial y}
$$

is parallel along the curve given by $(x(t), y(t))=(t, 1)$. Is this curve turning left or turning right?

