Differential Geometry of Curves and Surfaces

Homework 5

Due on October 20

1. Consider the following differential forms:

$$
\begin{aligned}
& \alpha=x d x+y d y \in \Omega^{1}\left(\mathbb{R}^{2}\right) ; \\
& \beta=-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y \in \Omega^{1}\left(\mathbb{R}^{2} \backslash\{\mathbf{0}\}\right) ; \\
& \omega=e^{x z} d x+x \cos z d y+y^{2} d z \in \Omega^{1}\left(\mathbb{R}^{3}\right) ; \\
& \eta=x d x \wedge d y-z d x \wedge d z+x y z d y \wedge d z \in \Omega^{2}\left(\mathbb{R}^{3}\right) .
\end{aligned}
$$

Consider also the following smooth functions:

$$
\begin{aligned}
& \mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{2} \text { defined as } \mathbf{f}(t)=\left(t, t^{2}\right) ; \\
& \mathbf{g}:(0,+\infty) \times(0,2 \pi) \rightarrow \mathbb{R}^{2} \text { defined as } \mathbf{g}(r, \theta)=(r \cos \theta, r \operatorname{sen} \theta) ; \\
& \mathbf{h}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \text { defined as } \mathbf{h}(u, v, w)=(u v, v w, u w)
\end{aligned}
$$

Compute:
(a) $\alpha \wedge \beta, \omega \wedge \eta, \eta \wedge \eta$;
(b) $d \alpha, d \beta, d \omega, d \eta$;
(c) $\mathbf{f}^{*} \alpha, \mathbf{g}^{*} \alpha, \mathbf{g}^{*} \beta, \mathbf{h}^{*} \eta$.
2. Recall that for any $\mathbf{v} \in \mathbb{R}^{3}$ we define

$$
\omega_{\mathbf{v}}=v^{1} d x+v^{2} d y+v^{3} d z
$$

and

$$
\Omega_{\mathbf{v}}=v^{1} d y \wedge d z+v^{2} d z \wedge d x+v^{3} d x \wedge d y
$$

Show that if $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a scalar field and $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a vector field then:
(a) $d \phi=\omega_{\text {grad } \phi ;} ;$
(b) $d \omega_{\mathbf{F}}=\Omega_{\mathrm{curl} \mathbf{F}}$;
(c) $d \Omega_{\mathbf{F}}=(\operatorname{div} \mathbf{F}) d x \wedge d y \wedge d z$;
(d) $d(d \phi)=0 \Leftrightarrow \operatorname{curl}(\operatorname{grad} \phi)=\mathbf{0}$;
(e) $d\left(d \omega_{\mathbf{F}}\right)=0 \Leftrightarrow \operatorname{div}(\operatorname{curl} \mathbf{F})=0$.

