Differential Geometry of Curves and Surfaces

Homework 4

Due on October 13

1. Show that $\mathrm{g}: \mathbb{R} \times(-\pi, \pi) \rightarrow \mathbb{R}^{3}$ given by

$$
\mathbf{g}(u, \varphi)=(\cosh u \cos \varphi, \cosh u \sin \varphi, \sinh u)
$$

is a parameterization of the 2 -dimensional manifold

$$
M=\left\{(x, y, z) \in \mathbb{R}^{4}: x^{2}+y^{2}=z^{2}+1\right\}
$$

and find $T_{(2,1,2)}^{\perp} M$.
2. Because $\binom{3}{1}=\binom{3}{2}=3$, it is possible to identify \mathbb{R}^{3} both with $\Lambda^{1}\left(\mathbb{R}^{3}\right)$ and with $\Lambda^{2}\left(\mathbb{R}^{3}\right)$: if $\mathbf{v} \in \mathbb{R}^{3}$, we define

$$
\omega_{\mathbf{v}}=v^{1} d x+v^{2} d y+v^{3} d z
$$

and

$$
\Omega_{\mathbf{v}}=v^{1} d y \wedge d z+v^{2} d z \wedge d x+v^{3} d x \wedge d y
$$

Show that:
(a) $\omega_{\mathbf{v}}(\mathbf{w})=\mathbf{v} \cdot \mathbf{w}$;
(b) $\Omega_{\mathbf{u}}(\mathbf{v}, \mathbf{w})=\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$;
(c) $\omega_{\mathbf{v}} \wedge \omega_{\mathbf{w}}=\Omega_{\mathbf{v} \times \mathbf{w}}$;
(d) $\omega_{\mathbf{v}} \wedge \Omega_{\mathbf{w}}=(\mathbf{v} \cdot \mathbf{w}) d x \wedge d y \wedge d z$.

