Differential Geometry of Curves and Surfaces

Homework 3

Due on October 6

Use a symbolic computation system, such as Mathematica, to solve this problem

1. Consider the simple closed regular space curve $\mathbf{c}:[0,2 \pi] \rightarrow \mathbb{R}^{3}$ given by

$$
\mathbf{c}(t)=((2+\cos (3 t)) \cos (2 t),(2+\cos (3 t)) \sin (2 t), \sin (3 t))) .
$$

(a) Obtain a plot of this curve. Based on this plot, is this curve the unknot?
(b) Obtain a numerical estimate of its total curvature, and check that it is bigger than 4π.
2. Consider the sets

$$
S^{3}=\left\{(x, y, z, w) \in \mathbb{R}^{4}: x^{2}+y^{2}+z^{2}+w^{2}=1\right\}
$$

and

$$
T^{2}=\left\{(x, y, z, w) \in \mathbb{R}^{4}: x^{2}+y^{2}=1 / 2 \text { and } z^{2}+w^{2}=1 / 2\right\} .
$$

(a) Show that both sets are manifolds, and compute their dimensions.
(b) Show that if $\mathbf{c}:[0,1] \rightarrow S^{3}$ is a continuous curve such that $\mathbf{c}(0)=(1,0,0,0)$ and $\mathbf{c}(1)=(0,0,0,1)$ then there must exist $t \in(0,1)$ such that $\mathbf{c}(t) \in T^{2} \subset S^{3}$.

