Differential Geometry of Curves and Surfaces

Homework 2

Due on September 29

1. Let $\mathbf{c}(t)$ be a regular space curve with nonvanishing curvature, and let $\mathbf{c}(s)=\mathbf{c}(t(s))$ be the same curve parameterized by its arclength. Let us denote Frenet-Serret frame by $\left\{\mathbf{e}_{1}(s), \mathbf{e}_{2}(s), \mathbf{e}_{3}(s)\right\}$, the curvature by $k(s)$, the torsion by $\tau(s)$, the derivative with respect to t by a dot, and the derivative with respect to s by a prime. Show that:
(a) $\dot{\mathbf{c}}(t)=\dot{s}(t) \mathbf{e}_{1}(s)$.
(b) $\ddot{\mathbf{c}}(t)=\ddot{s}(t) \mathbf{e}_{1}(s)+\dot{s}^{2}(t) k(s) \mathbf{e}_{2}(s)$.
(c) $\dddot{\mathbf{c}}(t)=\left(\dddot{s}(t)-\dot{s}^{3}(t) k^{2}(s)\right) \mathbf{e}_{1}(s)+\left(3 \dot{s}(t) \ddot{s}(t) k(s)+\dot{s}^{3}(t) k^{\prime}(s)\right) \mathbf{e}_{2}(s)+\dot{s}^{3}(t) k(s) \tau(s) \mathbf{e}_{3}(s)$.
(d) $k(s)=\frac{\|\dot{\mathbf{c}}(t) \times \ddot{\mathbf{c}}(t)\|}{\|\dot{\mathbf{c}}(t)\|^{3}}$.
(e) $\tau(s)=\frac{\dot{\mathbf{c}}(t) \cdot(\ddot{\mathbf{c}}(t) \times \dddot{\mathbf{c}}(t))}{\|\dot{\mathbf{c}}(t) \times \ddot{\mathbf{c}}(t)\|^{2}}$.
