Differential Geometry of Curves and Surfaces

Homework 12

Due on December 21

1. A compact surface S with Gauss curvature K can be decomposed into finitely many hexagons (that is, images by some parameterization of Euclidean hexagons) whose intersections are precisely a common edge, such that exactly three edges meet at each vertex. Compute $\int_{S} K$.
2. Show that the helicoid, defined as the image of the parameterization $\mathrm{g}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $\mathbf{g}(u, v)=(u \cos (a v+b), u \sin (a v+b), v)$ (where $a, b \in \mathbb{R}$ are constants), is a minimal surface.
