Differential Geometry of Curves and Surfaces

Homework 10

Due on December 7

1. Recall that the hyperbolic plane is the open domain $H=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ with the Riemannian metric

$$
d s^{2}=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right)
$$

Show that:
(a) The geodesic equations can be written as

$$
\left\{\begin{array}{l}
\ddot{x}-\frac{2}{y} \dot{x} \dot{y}=0 \\
\ddot{y}+\frac{1}{y} \dot{x}^{2}-\frac{1}{y} \dot{y}^{2}=0
\end{array}\right.
$$

(b) The quantities

$$
E=\frac{1}{y^{2}}\left(\dot{x}^{2}+\dot{y}^{2}\right), \quad p=\frac{\dot{x}}{y^{2}} \quad \text { and } \quad q=\frac{x \dot{x}}{y^{2}}+\frac{\dot{y}}{y}
$$

are constant along any geodesic.
(c) When $p=0$ then the geodesic is given by

$$
(x(t), y(t))=\left(x_{0}, y_{0} e^{ \pm \sqrt{E} t}\right)
$$

where x_{0} and $y_{0}>0$ are constants.
(d) When $p \neq 0$ then the image of the geodesic is contained in the circle

$$
(p x-q)^{2}+p^{2} y^{2}=E
$$

(with center in the x-axis).

