Differential Geometry of Curves and Surfaces

2023/2024
$2^{\text {nd }}$ Exam-29 January 2024-9:00
Duration: 2 hours

$(2 / 20) \quad$ 1. Let $\mathbf{c}:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ be a convex curve parametrized by the parameter t such that its unit tangent vector is

$$
\mathbf{e}_{1}(t)=(\cos t, \sin t)
$$

(note that t is well defined because the curve is convex). If we set, as usual,

$$
\mathbf{e}_{2}(t)=(-\sin t, \cos t)
$$

the the width of the curve at $\mathbf{c}(t)$ is

$$
W(t)=(\mathbf{c}(t+\pi)-\mathbf{c}(t)) \cdot \mathbf{e}_{2}(t)=-\mathbf{c}(t+\pi) \cdot \mathbf{e}_{2}(t+\pi)-\mathbf{c}(t) \cdot \mathbf{e}_{2}(t)
$$

Prove that the length of the curve is

$$
L=\int_{0}^{\pi} W(t) d t
$$

2. Consider the hyperboloid

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}-z^{2}=1\right\}
$$

(1/20)
(2/20)
(a) Prove that S is a manifold and find its dimension.
(b) Determine $T_{(1,1,1)} S$.
(c) Compute $\int_{S \cap\{0<z<1\}} d(x z d y-y z d x)$ for your choice of orientation.
(d) Show that the intersection of S with the planes $x=1$ and $z=0$ is the union of the images of finitely many geodesics.
(e) Compute the mean curvature H and the Gauss curvature K of S using the parameterization $\mathrm{g}: \mathbb{R} \times(0,2 \pi) \rightarrow S$ given by

$$
\mathbf{g}(u, \varphi)=(\cosh u \cos \varphi, \cosh u \sin \varphi, \sinh u)
$$

by resorting to:
(i) The classical formulas.
(ii) The method of orthonormal frames.
(f) Show that the angle by which a vector is rotated as it is parallel-transported once around $S \cap\{z=1\}$ is given by $\int_{S \cap\{0<z<1\}} K$.
$(2 / 20)$ 3. A ruled surface in any surface admitting a parameterization $\mathbf{g}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
\mathbf{g}(u, v)=\mathbf{c}(u)+v \mathbf{w}(u)
$$

where $\mathbf{c}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ is a curve and $\mathbf{w}: \mathbb{R} \rightarrow \mathbb{R}^{3} \backslash\{\mathbf{0}\}$ is a nonvanishing vector. Prove that the Gauss curvature of a ruled surface vanishes if and only

$$
\dot{\mathbf{c}}(u) \cdot(\mathbf{w}(u) \times \dot{\mathbf{w}}(u))=0
$$

for all $u \in \mathbb{R}$. Given $\mathbf{c}(u)$, give three possible choices of functions $\mathbf{w}(u)$ that satisfy this condition (the resulting surfaces are called developable surfaces).
(2/20) 4. The third fundamental form of a surface with parameterization $\mathbf{g}(u, v)$ and unit normal vector $\mathbf{n}(u, v)$ is defined as $\mathbf{I I I}=d \mathbf{n} \cdot d \mathbf{n}$. Prove that $K \mathbf{I}-2 H \mathbf{I I}+\mathbf{I I I}=0$.
Hint: Use the method of moving frames.
$(2 / 20)$ 5. Identify the minimal surface with Weierstrass-Enneper data $f(w)=e^{i w}$ and $g(w)=e^{-i w}$.

