Differential Geometry of Curves and Surfaces

2023/2024
$1^{\text {st }}$ Exam - 15 January 2024-9:00
Duration: 2 hours

(2/20) 1. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a closed regular curve, where we use the standard identification $\mathbb{R}^{2} \simeq \mathbb{C}$. Show that the rotation index of γ is given by

$$
m=\frac{1}{2 \pi} \operatorname{Im} \int_{a}^{b} \frac{\ddot{\gamma}(t)}{\dot{\gamma}(t)} d t
$$

Moreover, show that if $f: \mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic function whose derivative does not vanish on the image of γ then the rotation index of the curve $\Gamma=f \circ \gamma$ is

$$
m^{\prime}=m+\frac{1}{2 \pi} \operatorname{Im} \int_{\Gamma} \frac{f^{\prime \prime}(z)}{f^{\prime}(z)} d z
$$

Hint: Start by showing that the curvature of γ is $k(t)=\frac{\operatorname{Im}(\overline{\dot{\gamma}}(t) \ddot{\gamma}(t))}{|\dot{\gamma}(t)|^{3}}$.
2. Consider the differential forms defined on $\mathbb{R}^{3} \backslash\{x=y=0\}$ by

$$
\omega=-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y \quad \text { and } \quad \eta=\omega \wedge d z
$$

Show that:
(a) ω is closed but not exact.
(2/20)
(b) η is exact.
3. Consider the hyperbolic paraboloid

$$
\begin{equation*}
P=\left\{(x, y, z) \in \mathbb{R}^{3}: z=x y\right\} \tag{2/20}
\end{equation*}
$$

(a) Compute the Gauss curvature and the mean curvature of P.
(b) Show that the curves of constant x are (images of) geodesics.
(1/20)
(c) Prove that if a surface $S \subset \mathbb{R}^{3}$ contains a straight line then its Gauss curvature cannot be positive on the points of that line.
4. Consider the Riemannian metric

$$
d s^{2}=\frac{1}{\cos ^{2} y}\left(d x^{2}+d y^{2}\right)
$$

defined on the open set $\mathbb{R} \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
(a) Show that the lines of constant x are (images of) geodesics.
(b) Compute the Gauss curvature of this metric.
(c) Prove that two geodesics with different images can intersect at most in one point.
(d) Determine the vector field $\mathbf{V}(t)$, parallel along the curve $\mathbf{c}(t)=\left(t, y_{0}\right)$ (for some choice of $0<y_{0}<\frac{\pi}{2}$), satisfying $\mathbf{V}(0)=\frac{\partial}{\partial y}$. Is the curve $\mathbf{c}(t)$ turning left or right?
$(2 / 20) \quad$ 5. Suppose that the compact surface $S \subset \mathbb{R}^{3}$ is the boundary of a bounded open set $A \subset \mathbb{R}^{3}$. Given a parameterization $\mathrm{g}: U \subset \mathbb{R}^{2} \rightarrow S$ of S, consider the small deformation

$$
\mathbf{g}_{\varepsilon}(u, v)=\mathbf{g}(u, v)+\varepsilon f(u, v) \mathbf{n}(u, v)
$$

where $f: U \rightarrow \mathbb{R}$ has compact support and $\mathbf{n}: U \rightarrow S^{2}$ is the unit normal pointing away from A. If $V(\varepsilon)$ is the volume of the open set A_{ε} whose boundary is the surface S_{ε} parameterized by \mathbf{g}_{ε}, show that

$$
\frac{d V}{d \varepsilon}(0)=\iint_{U} f \sqrt{E G-F^{2}} d u d v
$$

Assuming that the method of Lagrange multipliers still works in this context, prove that of all surfaces that bound open sets with a given fixed volume, the one with minimal area (if it exists) must have constant mean curvature.
$(2 / 20)$ 6. Use the Weierstrass-Enneper representation to show that if a minimal surface is flat then it is contained in a plane.

