# Differential Geometry of Curves and Surfaces 

2023/2024<br>\section*{Mock Exam}<br>Duration: 2 hours

(2/20)

1. Compute the maximum and the minimum curvatures of the ellipse

$$
E=\left\{(x, y) \in \mathbb{R}^{2}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right\},
$$

where $a>b>0$, using the parameterization $\mathbf{g}:[0,2 \pi] \rightarrow E$ given by

$$
\mathbf{g}(t)=(a \cos t, b \sin t) .
$$

2. Consider the set

$$
\begin{equation*}
M=\left\{(x, y, z, u, v) \in \mathbb{R}^{5}: x^{2}+y^{2}+z^{2}=2, u^{2}+v^{2}=1, z>0\right\} . \tag{1/20}
\end{equation*}
$$

(a) Show that $M$ is a differentiable manifold and find its dimension.
(b) Determine the tangent space to $M$ at the point ( $0,1,1,1,0$ ).
(c) Compute $\int_{M} d \omega$, where $\omega=x u d y \wedge d v$, for your choice of orientation.
3. Compute the mean and the Gauss curvatures of the ellipsoid

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1\right\},
$$

where $a, b>0$, by using the parameterization $\mathbf{g}:(0, \pi) \times(0,2 \pi) \rightarrow E$ given by

$$
\mathbf{g}(\theta, \varphi)=(a \sin \theta \cos \varphi, a \sin \theta \sin \varphi, b \cos \theta),
$$

and resorting to:
(2/20)
(2/20)
(a) The classical formulas.
(b) The method of orthonormal frames.
4. Consider $\mathbb{R}^{2}$ endowed with the Riemannian metric

$$
d s^{2}=\frac{1}{\cosh ^{2} y}\left(d x^{2}+d y^{2}\right) .
$$

(2/20) (a) Show that the lines of constant $x$ are (images of) geodesics. What can you say about the lines of constant $y$ ?
$(1 / 20) \quad$ (b) Prove that the inner product between the unit tangent vector to any geodesic and the vector field $\frac{\partial}{\partial x}$ is constant.
(1/20) (c) Compute the Gauss curvature of this metric.
$(2 / 20) \quad$ (d) Use the Gauss-Bonnet Theorem to find $\lim _{b \rightarrow \infty} \operatorname{Area}(\Delta(a, b))$, where

$$
\Delta(a, b)=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<a \text { and } 0<y<b\right\} .
$$

(2/20) 5. A compact orientable surface $S$ can be decomposed into finitely many pentagons (that is, images by some parameterization of Euclidean pentagons) whose intersections are precisely a common edge, such that exactly three edges meet at each vertex. Which surface is $S$, and how many pentagons are there in the decomposition?
(2/20) 6. Let $S \subset \mathbb{R}^{3}$ be a surface with Gauss curvature $K=-1$. Prove that $S$ is not a minimal surface.

