Resumo dos resumos de CDI-II

1. Limites e continuidade

1. Limites direccionais: Se

$$\lim_{x \to 0} f(x, mx)$$

não existe, ou existe mas depende de m, então

$$\lim_{(x,y)\to(0,0)} f(x,y)$$

não existe.

2. Produto de uma função limitada por um infinitésimo:

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0$$

porque $y \to 0$ e

$$\left| \frac{x^2}{x^2 + y^2} \right| \le 1.$$

3. **Teorema Weierstrass:** Se $A \subset \mathbb{R}^n$ é compacto e $f:A \to \mathbb{R}$ é contínua então f tem máximo e mínimo em A.

2. Cálculo diferencial em \mathbb{R}^n

1. Derivada de $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ segundo o vector $\mathbf{v} \in \mathbb{R}^n$ no ponto $\mathbf{a} \in \mathbb{R}^n$:

$$\frac{\partial \mathbf{f}}{\partial \mathbf{v}}(\mathbf{a}) = \lim_{h \to 0} \frac{\mathbf{f}(\mathbf{a} + h\mathbf{v}) - \mathbf{f}(\mathbf{a})}{h}.$$

2. Derivada parcial:

$$\frac{\partial \mathbf{f}}{\partial x_i}(\mathbf{a}) = \frac{\partial \mathbf{f}}{\partial \mathbf{e}_i}(\mathbf{a}).$$

3. $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável em a se

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{\mathbf{f}(\mathbf{a}+\mathbf{h})-\mathbf{f}(\mathbf{a})-D\mathbf{f}(\mathbf{a})\cdot\mathbf{h}}{\|\mathbf{h}\|}=\mathbf{0},$$

onde $Df(\mathbf{a})$ é a matriz Jacobiana:

$$D\mathbf{f}(\mathbf{a}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ & \ddots & \ddots & \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}.$$

- 4. f diferenciável em $a \Rightarrow f$ contínua em a.
- 5. **f** diferenciável em $\mathbf{a} \Rightarrow \frac{\partial \mathbf{f}}{\partial \mathbf{v}}(\mathbf{a}) = D\mathbf{f}(\mathbf{a}) \cdot \mathbf{v}$.
- 6. $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ é de **classe** C^1 se todas as suas derivadas parciais $\frac{\partial f_i}{\partial x_j}$ são funções contínuas.
- 7. **f** $C^1 \Rightarrow$ **f** differenciável.
- 8. Derivada da composta:

$$D(\mathbf{g} \circ \mathbf{f})(\mathbf{a}) = D\mathbf{g}(\mathbf{f}(\mathbf{a}))D\mathbf{f}(\mathbf{a}).$$

9. Regra da cadeia:

$$\frac{\partial (g_i \circ \mathbf{f})}{\partial x_j} = \sum_{k=1}^m \frac{\partial g_i}{\partial y_k} \frac{\partial f_k}{\partial x_j}.$$

10. Gradiente:

$$\operatorname{grad} f \equiv \nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right).$$

 $\acute{\mathsf{E}}$ perpendicular aos conjuntos de nível de f, e indica a direção de maior crescimento.

3. Fórmula de Taylor e extremos

1. Lema de Schwarz: Se $f: \mathbb{R}^n \to \mathbb{R}$ é de classe C^2 então

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i},$$

ou seja, a matriz Hessiana

$$Hf = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

é simétrica.

- 2. Se $f: \mathbb{R}^n \to \mathbb{R}$ tem um extremo local em $\mathbf{a} \in \mathbb{R}^n$ então $Df(\mathbf{a}) = 0$ (a é um **ponto crítico**, ou **ponto de estacionaridade**).
- 3. $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^2 , $\mathbf{a} \in \mathbb{R}^n$ um ponto crítico de f. Se $Hf(\mathbf{a})$ é:
 - (i) definida positiva (todos os v.p. > 0) então a é um ponto de mínimo local;
 - (ii) definida negativa (todos os v.p. < 0) então a é um ponto de máximo local;
 - (iii) indefinida (existem v.p. > 0 e v.p. < 0) então $\mathbf a$ é um ponto de sela.

4. Função inversa e função implícita

1. **Teorema da função inversa:** $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ C^1 , $J\mathbf{f}(\mathbf{a}) \neq 0$. Então \mathbf{f} é invertível numa vizinhança de \mathbf{a} , com inversa C^1 . Além disso, nessa vizinhança

$$D\mathbf{f}^{-1}(\mathbf{f}(\mathbf{x})) = [D\mathbf{f}(\mathbf{x})]^{-1}$$
.

2. **Teorema da função implícita:** $\mathbf{F}: \mathbb{R}^{n+m} \to \mathbb{R}^m$ C^1 , $\mathbf{F}(\mathbf{a}, \mathbf{b}) = \mathbf{0}$, $\det \frac{\partial \mathbf{F}}{\partial \mathbf{y}}(\mathbf{a}, \mathbf{b}) \neq 0$. Então existe uma função $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ tal que $\mathbf{F}(\mathbf{x}, \mathbf{y}) = \mathbf{0} \Leftrightarrow \mathbf{y} = \mathbf{f}(\mathbf{x})$ numa vizinhança de (\mathbf{a}, \mathbf{b}) . Além disso,

$$D\mathbf{f}(\mathbf{a}) = -\left[\frac{\partial \mathbf{F}}{\partial \mathbf{y}}(\mathbf{a}, \mathbf{b})\right]^{-1} \frac{\partial \mathbf{F}}{\partial \mathbf{x}}(\mathbf{a}, \mathbf{b}).$$

5. Extremos condicionados

1. Regra dos multiplicadores de Lagrange: Os extremos de $f: \mathbb{R}^n \to \mathbb{R}$ restrita ao conjunto de nível $\mathbf{F}(\mathbf{x}) = \mathbf{0}$ são soluções do sistema

$$\begin{cases} \nabla (f + \lambda_1 F_1 + \ldots + \lambda_m F_m)(\mathbf{x}) = \mathbf{0} \\ \mathbf{F}(\mathbf{x}) = \mathbf{0} \end{cases}$$

6. Cálculo integral em \mathbb{R}^n

1. Teorema de Fubini:

$$\int_{I \times I} f = \int_{I} \left(\int_{I} f(\mathbf{x}, \mathbf{y}) \, dV_m(\mathbf{y}) \right) dV_n(\mathbf{x}) = \int_{I} \left(\int_{I} f(\mathbf{x}, \mathbf{y}) \, dV_n(\mathbf{x}) \right) dV_m(\mathbf{y}).$$

- 2. Dada uma **função densidade de massa** $\rho:A\subset\mathbb{R}^3\to\mathbb{R}^+$ define-se:
 - (i) O **volume** de A:

$$V_3(A) = \int_A 1.$$

(ii) A massa de A:

$$M = \int_{\Lambda} \rho.$$

(iii) A coordenada x do **centro de massa** de A:

$$\bar{x} = \frac{1}{M} \int_{A} \rho \, x$$

(analogamente para \bar{y}, \bar{z} ; fazendo $\rho \equiv 1$ obtém-se o **centróide**).

(iv) O momento de inércia de A em relação ao eixo dos zz:

$$I_z = \int_A \rho \left(x^2 + y^2 \right)$$

(analogamente para I_x, I_y).

3. Teorema de mudança de variáveis:

$$\int_{\mathbf{g}(U)} f = \int_{U} (f \circ \mathbf{g}) |J\mathbf{g}|.$$

4. Coordenadas polares: $\mathbf{g}:]0, +\infty[\times]0, 2\pi[\to \mathbb{R}^2]$

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}, \quad J\mathbf{g}(r, \theta) = r.$$

5. Coordenadas cilíndricas: $\mathbf{g}:]0, +\infty[\times]0, 2\pi[\times\mathbb{R} \to \mathbb{R}^3]$

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}, \quad J\mathbf{g}(\rho, \varphi, z) = \rho.$$

$$z = z$$

6. Coordenadas esféricas: $\mathbf{g}:]0, +\infty[\times]0, \pi[\times]0, 2\pi[\to \mathbb{R}^3$

$$\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \\ z = r \cos \theta \end{cases}, \qquad J\mathbf{g}(r, \theta, \varphi) = r^2 \sin \theta.$$

7. Regra de Leibnitz:

$$\frac{d}{dt} \int_{I} f(\mathbf{x}, t) \, dV_n(\mathbf{x}) = \int_{I} \frac{\partial f}{\partial t}(\mathbf{x}, t) \, dV_n(\mathbf{x}).$$

7. Integrais de linha de campos escalares e de campos vetoriais

1. Integral de linha de $f: \mathbb{R}^n \to \mathbb{R}$ ao longo da curva C (parametrizada por $g: [a,b] \to \mathbb{R}^n$):

$$\int_{C} f = \int_{a}^{b} f(\mathbf{g}(t)) \left\| \frac{d\mathbf{g}}{dt}(t) \right\| dt.$$

2. **Integral de linha** de $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ ao longo da curva C (depende do sentido):

$$\int_{C} \mathbf{F} \cdot d\mathbf{g} = \int_{a}^{b} \mathbf{F}(\mathbf{g}(t)) \cdot \frac{d\mathbf{g}}{dt}(t) dt$$

8. Campos gradientes e campos fechados

1. Teorema Fundamental do Cálculo para Integrais de Linha:

$$\int_{C} \nabla \phi \cdot d\mathbf{g} = \phi(\mathbf{g}(b)) - \phi(\mathbf{g}(a)).$$

- 2. \mathbf{F} é gradiente **sse** $\oint_C \mathbf{F} \cdot d\mathbf{g} = 0$ para qualquer curva fechada C.
- 3. ${\bf F}$ é **fechado** se $\frac{\partial F_i}{\partial x_i}=\frac{\partial F_j}{\partial x_i}$ (ou seja, se $D{\bf F}$ é simétrica).
- 4. \mathbf{F} gradiente $\Rightarrow \mathbf{F}$ fechado.
- 5. Duas curvas fechadas dizem-se **homotópicas** se podem ser continuamente deformadas uma na outra.
- 6. **F** fechado, C_1, C_2 homotópicas $\Rightarrow \oint_{C_1} \mathbf{F} \cdot d\mathbf{g} = \oint_{C_2} \mathbf{F} \cdot d\mathbf{g}$.
- 7. $A \subset \mathbb{R}^n$ é **simplesmente conexo** se qualquer curva fechada em A é homotópica em A a um ponto.
- 8. \mathbf{F} fechado, domínio simplesmente conexo $\Rightarrow \mathbf{F}$ gradiente.

9. Teorema de Green

1. Teorema de Green:

$$\oint_{\partial U} \mathbf{F} \cdot d\mathbf{g} \equiv \oint_{\partial U} P dx + Q dy = \int_{U} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

5