
MATH 23b, SPRING 2005
THEORETICAL LINEAR ALGEBRA
AND MULTIVARIABLE CALCULUS

The Inverse Function Theorem

The Inverse Function Theorem. Let f : Rn −→ Rn be continuously
differentiable on some open set containing a, and suppose det Jf(a) 6= 0. Then
there is some open set V containing a and an open W containing f(a) such
that f : V → W has a continuous inverse f−1 : W → V which is differentiable
for all y ∈ W .

Note: As matrices, J(f−1)(y) = [(Jf)(f−1(y))]−1.

Lemma: Let A ⊂ Rn be an open rectangle, and suppose f : A −→ Rn is
continuously differentiable. If there is some M > 0 such that∣∣∣∣ ∂fi

∂xj

(x)

∣∣∣∣ ≤ M, ∀x ∈ A, then ||f(y)− f(z)|| ≤ n2 ·M · ||y − z||, ∀y, z ∈ A.

Proof: We write

fi(y)− fi(z) = fi(y1, . . . , yn)− fi(z1, . . . , zn)

=
n∑

j=1

[f(y1, . . . , yj, zj+1, . . . , zn)− f(y1, . . . , yj−1, zj, zj+1, . . . , zn)]

=
n∑

j=1

∂fi

∂xj

(xij)(yj − zj)

for some xij = (y1, . . . , yj−1, cj, zj+1, . . . , zn) where, for each j = 1, . . . , n,
we have cj is in the interval (yj, zj), by the single-variable Mean Value
Theorem.

Then

||f(y)− f(z)|| ≤
n∑

i=1

||fi(y)− fi(z)||

=
n∑

i=1

n∑
j=1

∣∣∣∣ ∂fi

∂xj

(xij)

∣∣∣∣ · |yj − zj|

≤
n∑

i=1

n∑
j=1

M · ||y − z||

= n2 ·M · ||y − z||
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Proof of the Inverse Function Theorem:
(borrowed principally from Spivak’s Calculus on Manifolds)

Let L = Jf(a). Then det(L) 6= 0, and so L−1 exists. Consider the com-
posite function L−1 ◦ f : Rn → Rn. Then:

J(L−1 ◦ f)(a) = J(L−1)(f(a)) ◦ Jf(a)
= L−1 ◦ Jf(a)
= L−1 ◦ L

which is the identity. Since L is invertible, the theorem is equally true or false
for both L−1 ◦ f and f simultaneously, and hence we prove it in the case when
L = I.

Suppose f(a + h) = f(a). Then
|f(a + h)− f(a)− L(h)|

|h|
=
|h|
|h|

= 1.

On the other hand, we have have lim
||h||→0

f(a + h)− f(a)− L(h)

||h||
= 0,

which is a contradiction, and hence there must be some open neighborhood/rectangle
U around a in which f(a + h) 6= f(a), ∀a + h ∈ U, h 6= 0.

Furthermore, we may choose this neighborhood U small enough so that:

• det(Jf(x)) 6= 0, ∀x ∈ U

•
∣∣∣∣ ∂fi

∂xj

(x)− ∂fi

∂xj

(a)

∣∣∣∣ <
1

2n2
, ∀i, j, ∀x ∈ U

since these are conditions on n2 + 1 continuous functions!

Claim 1: ||x1 − x2|| ≤ 2 · ||f(x1)− f(x2)||, ∀x1,x2 ∈ U

Proof of Claim 1: First, we let g(x) = f(x)− x. By construction and

the second fact above, we have

∣∣∣∣ ∂gi

∂xj

(x)

∣∣∣∣ =

∣∣∣∣ ∂fi

∂xj

(x)− ∂fi

∂xj

(a)

∣∣∣∣ ≤ 1

2n2
,

and so we apply the Lemma with M =
1

2n2
:

||x1 − x2|| − ||f(x1)− f(x2)|| ≤ ||(f(x1)− x1)− (f(x2)− x2)||
= ||g(x1)− g(x2)||
≤ 1

2
· ||x1 − x2||

and so, combining these inequalities, we have

1
2
· ||x1 − x2|| ≤ ||f(x1)− f(x2)||
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Now consider the set ∂U , which is compact since U is bounded. We know
by the reasoning in the second paragraph of the proof that if x ∈ ∂U , then
f(x) 6= f(a). Hence ∃d > 0 such that ||f(x) − f(a)|| ≥ d, ∀x ∈ ∂U .
(Since both f and the taking of norms are continuous functions, the expression
||f(x)− f(a)|| attains its non-zero minimum on the compact set ∂U .)

We construct the set W ⊂ Rn, thinking of it as a subset of the range of f ,
as follows:

W =

{
y ∈ Rn

∣∣∣∣ ||y − f(a)|| < d

2

}
= Bd/2(f(a))

By its construction and the use of the positive real number d, we see that if
y ∈ W and x ∈ ∂U , then

||y − f(a)|| < ||y − f(x)||. (1)

Claim 2: Given y ∈ W , there is a unique x ∈ U such that f(x) = y.

Proof of Claim 2:

Existence:

Consider h : U → R defined by h(x) = ||y− f(x)||2. A straightfor-

ward simplification of this expression gives h(x) =
n∑

i=1

(yi − fi(x))2.

Note that h is continuous and hence attains its minimum on the
compact set U . This minimum does not occur on the boundary,
∂U , by the inequality (1), and hence it must occur on the inte-
rior. Since h is also differentiable, we must have ∇h(x) = 0 at the
minimum, and hence:

0 =
∂h

∂xj

(x) =
n∑

i=1

2 · (yi − fi(x)) · ∂fi

∂xj

(x), ∀j

In other words, collecting this information over the various i and j,
we have

0 = Jf(x) · (y − f(x)),

but since we have assumed that det Jf(x) 6= 0 for any x ∈ U , it
follows that Jf(x) is invertible, and hence y − f(x) = 0.

Uniqueness:

We use Claim 1. Suppose y = f(x1) = f(x2).

Then ||x1 − x2|| ≤ 2 · ||f(x1)− f(x2)|| = 0, and hence x1 = x2.
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By Claim 2, if we define V = U ∩ f−1(W ), then f : V → U has an inverse!
It remains to show that f−1 is continuous and differentiable. Even though
continuity would follow from differentiability, we do this in two steps because
we will use the continuity to help prove the differentiability.

Claim 3: f−1 is continuous.

Proof of Claim 3:

For y1,y2 ∈ W , find x1,x2 ∈ U such that f(x1) = y1 and f(x2) =
y2. Claim 1 implies that ||x1 − x2|| ≤ 2 · ||f(x1) − f(x2)||, or in
other words, that ||f−1(y1)− f−1(y2)|| ≤ 2 · ||y1 − y2||.

It is now easy to see that given ε > 0, we need only choose δ = ε/2
to guarantee that if ||y1 − y2|| < δ, then ||f−1(y1)− f−1(y2)|| < ε.

�

Claim 4: f−1 is differentiable.

Proof of Claim 4:

Let x ∈ V , let A = Jf(x), and let y = f(x) ∈ W .

We claim that Jf−1(y) = A−1.

Define ϕ(x) = f(x + h)− f(x)− A(h).

Then lim
||h||→0

||ϕ(h)||
||h||

= 0, by the differentiability of f .

Since det(A) = det Jf(x) 6= 0 by hypothesis, we know that A−1

exists, and it is linear since A is. Then:

A−1(f(x + h)− f(x)) = h + A−1(ϕ(h))
= [(x + h)− x] + A−1(ϕ(h))

Letting y = f(x) and y1 = f(x + h) on both sides yields:

A−1(y1 − y) = [f−1(y1)− f−1(y)] + A−1(ϕ(f−1(y1)− f−1(y)))

Re-arranging sides:

A−1(ϕ(f−1(y1)−f−1(y))) = [f−1(y1)−f−1(y)]−A−1(y1−y) (2)
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To show differentiability, we need:

lim
||y1−y||→0

||f−1(y1)− f−1(y)− A−1(y1 − y)||
||y1 − y||

= 0

but by equation (2) above, this is the same as showing:

lim
||y1−y||→0

||A−1(ϕ(f−1(y1)− f−1(y)))||
||y1 − y||

= 0.

Since A−1 is linear, it suffices to use the Chain Rule and show that:

lim
||y1−y||→0

||ϕ(f−1(y1)− f−1(y))||
||y1 − y||

= 0, (3)

so we factor the expression inside the limit as follows:

||ϕ(f−1(y1)− f−1(y))||
||y1 − y||

=
||ϕ(f−1(y1)− f−1(y))||
||f−1(y1)− f−1(y)||

· ||f
−1(y1)− f−1(y)||
||y1 − y||

.

The first term on the right tends to 0 because of how we defined
ϕ and the fact that the continuity of f−1 means that f−1(y1) →
f−1(y).

Observing that the second term on the right is less than or equal to
2 (by Claim 1) enables us to use the Squeeze Theorem and conclude
that the product on the right tends to 0, which establishes equation
(3).

�

End Proof of Inverse Function Theorem.

(borrowed principally from
Spivak’s Calculus on Manifolds)
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