MATH 23b, SPRING 2005
THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS

The Inverse Function Theorem

The Inverse Function Theorem. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be continuously differentiable on some open set containing \mathbf{a}, and suppose $\operatorname{det} J f(\mathbf{a}) \neq 0$. Then there is some open set V containing a and an open W containing $f(\mathbf{a})$ such that $f: V \rightarrow W$ has a continuous inverse $f^{-1}: W \rightarrow V$ which is differentiable for all $\mathbf{y} \in W$.

$$
\text { Note: As matrices, } J\left(f^{-1}\right)(\mathbf{y})=\left[(J f)\left(f^{-1}(\mathbf{y})\right)\right]^{-1} .
$$

Lemma: Let $A \subset \mathbb{R}^{n}$ be an open rectangle, and suppose $f: A \longrightarrow \mathbb{R}^{n}$ is continuously differentiable. If there is some $M>0$ such that $\left|\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{x})\right| \leq M, \quad \forall \mathbf{x} \in A$, then $\|f(\mathbf{y})-f(\mathbf{z})\| \leq n^{2} \cdot M \cdot\|\mathbf{y}-\mathbf{z}\|, \quad \forall \mathbf{y}, \mathbf{z} \in A$.

Proof: We write

$$
\begin{aligned}
f_{i}(\mathbf{y})-f_{i}(\mathbf{z}) & =f_{i}\left(y_{1}, \ldots, y_{n}\right)-f_{i}\left(z_{1}, \ldots, z_{n}\right) \\
& =\sum_{j=1}^{n}\left[f\left(y_{1}, \ldots, y_{j}, z_{j+1}, \ldots, z_{n}\right)-f\left(y_{1}, \ldots, y_{j-1}, z_{j}, z_{j+1}, \ldots, z_{n}\right)\right] \\
& =\sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}}\left(\mathbf{x}_{i j}\right)\left(y_{j}-z_{j}\right)
\end{aligned}
$$

for some $\mathbf{x}_{i j}=\left(y_{1}, \ldots, y_{j-1}, c_{j}, z_{j+1}, \ldots, z_{n}\right)$ where, for each $j=1, \ldots, n$, we have c_{j} is in the interval $\left(y_{j}, z_{j}\right)$, by the single-variable Mean Value Theorem.

Then

$$
\begin{aligned}
\|f(\mathbf{y})-f(\mathbf{z})\| & \leq \sum_{i=1}^{n}\left\|f_{i}(\mathbf{y})-f_{i}(\mathbf{z})\right\| \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left|\frac{\partial f_{i}}{\partial x_{j}}\left(\mathbf{x}_{i j}\right)\right| \cdot\left|y_{j}-z_{j}\right| \\
& \leq \sum_{i=1}^{n} \sum_{j=1}^{n} M \cdot\|\mathbf{y}-\mathbf{z}\| \\
& =n^{2} \cdot M \cdot\|\mathbf{y}-\mathbf{z}\|
\end{aligned}
$$

Proof of the Inverse Function Theorem:

(borrowed principally from Spivak's Calculus on Manifolds)
Let $L=J f(\mathbf{a})$. Then $\operatorname{det}(L) \neq 0$, and so L^{-1} exists. Consider the composite function $L^{-1} \circ f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Then:

$$
\begin{aligned}
J\left(L^{-1} \circ f\right)(\mathbf{a}) & =J\left(L^{-1}\right)(f(\mathbf{a})) \circ J f(\mathbf{a}) \\
& =L^{-1} \circ J f(\mathbf{a}) \\
& =L^{-1} \circ L
\end{aligned}
$$

which is the identity. Since L is invertible, the theorem is equally true or false for both $L^{-1} \circ f$ and f simultaneously, and hence we prove it in the case when $L=I$.

Suppose $f(\mathbf{a}+\mathbf{h})=f(\mathbf{a})$. Then $\frac{|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-L(\mathbf{h})|}{|\mathbf{h}|}=\frac{|\mathbf{h}|}{|\mathbf{h}|}=1$.
On the other hand, we have have $\lim _{\|\mathbf{h}\| \rightarrow 0} \frac{f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-L(\mathbf{h})}{\|\mathbf{h}\|}=\mathbf{0}$,
which is a contradiction, and hence there must be some open neighborhood/rectangle U around \mathbf{a} in which $f(\mathbf{a}+\mathbf{h}) \neq f(\mathbf{a}), \forall \mathbf{a}+\mathbf{h} \in U, \mathbf{h} \neq \mathbf{0}$.

Furthermore, we may choose this neighborhood U small enough so that:

- $\operatorname{det}(J f(\mathbf{x})) \neq 0, \quad \forall \mathbf{x} \in U$
- $\left|\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{x})-\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{a})\right|<\frac{1}{2 n^{2}}, \quad \forall i, j, \quad \forall \mathbf{x} \in U$
since these are conditions on $n^{2}+1$ continuous functions!

Claim 1: $\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\| \leq 2 \cdot\left\|f\left(\mathbf{x}_{1}\right)-f\left(\mathbf{x}_{2}\right)\right\|, \quad \forall \mathbf{x}_{1}, \mathbf{x}_{2} \in U$
Proof of Claim 1: First, we let $g(\mathbf{x})=f(\mathbf{x})-\mathbf{x}$. By construction and the second fact above, we have $\left|\frac{\partial g_{i}}{\partial x_{j}}(\mathbf{x})\right|=\left|\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{x})-\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{a})\right| \leq \frac{1}{2 n^{2}}$, and so we apply the Lemma with $M=\frac{1}{2 n^{2}}$:

$$
\begin{aligned}
\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|-\left\|f\left(\mathbf{x}_{1}\right)-f\left(\mathbf{x}_{2}\right)\right\| & \leq\left\|\left(f\left(\mathbf{x}_{1}\right)-\mathbf{x}_{1}\right)-\left(f\left(\mathbf{x}_{2}\right)-\mathbf{x}_{2}\right)\right\| \\
& =\left\|g\left(\mathbf{x}_{1}\right)-g\left(\mathbf{x}_{2}\right)\right\| \\
& \leq \frac{1}{2} \cdot\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|
\end{aligned}
$$

and so, combining these inequalities, we have

$$
\frac{1}{2} \cdot\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\| \leq\left\|f\left(\mathbf{x}_{1}\right)-f\left(\mathbf{x}_{2}\right)\right\|
$$

Now consider the set ∂U, which is compact since U is bounded. We know by the reasoning in the second paragraph of the proof that if $\mathbf{x} \in \partial U$, then $f(\mathbf{x}) \neq f(\mathbf{a})$. Hence $\exists d>0$ such that $\|f(\mathbf{x})-f(\mathbf{a})\| \geq d, \quad \forall \mathbf{x} \in \partial U$. (Since both f and the taking of norms are continuous functions, the expression $\|f(\mathbf{x})-f(\mathbf{a})\|$ attains its non-zero minimum on the compact set ∂U.)

We construct the set $W \subset \mathbb{R}^{n}$, thinking of it as a subset of the range of f, as follows:

$$
W=\left\{\mathbf{y} \in \mathbb{R}^{n} \left\lvert\,\|\mathbf{y}-f(\mathbf{a})\|<\frac{d}{2}\right.\right\}=B_{d / 2}(f(\mathbf{a}))
$$

By its construction and the use of the positive real number d, we see that if $\mathbf{y} \in W$ and $\mathbf{x} \in \partial U$, then

$$
\begin{equation*}
\|\mathbf{y}-f(\mathbf{a})\|<\|\mathbf{y}-f(\mathbf{x})\| . \tag{1}
\end{equation*}
$$

Claim 2: Given $\mathbf{y} \in W$, there is a unique $\mathbf{x} \in U$ such that $f(\mathbf{x})=\mathbf{y}$.

Proof of Claim 2:

Existence:

Consider $h: U \rightarrow \mathbb{R}$ defined by $h(\mathbf{x})=\|\mathbf{y}-f(\mathbf{x})\|^{2}$. A straightforward simplification of this expression gives $h(\mathbf{x})=\sum_{i=1}^{n}\left(y_{i}-f_{i}(\mathbf{x})\right)^{2}$. Note that h is continuous and hence attains its minimum on the compact set \bar{U}. This minimum does not occur on the boundary, ∂U, by the inequality (1), and hence it must occur on the interior. Since h is also differentiable, we must have $\nabla h(\mathbf{x})=0$ at the minimum, and hence:

$$
0=\frac{\partial h}{\partial x_{j}}(\mathbf{x})=\sum_{i=1}^{n} 2 \cdot\left(y_{i}-f_{i}(\mathbf{x})\right) \cdot \frac{\partial f_{i}}{\partial x_{j}}(\mathbf{x}), \quad \forall j
$$

In other words, collecting this information over the various i and j, we have

$$
\mathbf{0}=J f(\mathbf{x}) \cdot(\mathbf{y}-f(\mathbf{x}))
$$

but since we have assumed that $\operatorname{det} J f(\mathbf{x}) \neq 0$ for any $\mathbf{x} \in U$, it follows that $J f(\mathbf{x})$ is invertible, and hence $\mathbf{y}-f(\mathbf{x})=\mathbf{0}$.
Uniqueness:
We use Claim 1. Suppose $\mathbf{y}=f\left(\mathbf{x}_{1}\right)=f\left(\mathbf{x}_{2}\right)$.
Then $\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\| \leq 2 \cdot\left\|f\left(\mathbf{x}_{1}\right)-f\left(\mathbf{x}_{2}\right)\right\|=0$, and hence $\mathbf{x}_{1}=\mathbf{x}_{2}$.

By Claim 2, if we define $V=U \cap f^{-1}(W)$, then $f: V \rightarrow U$ has an inverse! It remains to show that f^{-1} is continuous and differentiable. Even though continuity would follow from differentiability, we do this in two steps because we will use the continuity to help prove the differentiability.

Claim 3: f^{-1} is continuous.

Proof of Claim 3:

For $\mathbf{y}_{1}, \mathbf{y}_{2} \in W$, find $\mathbf{x}_{1}, \mathbf{x}_{2} \in U$ such that $f\left(\mathbf{x}_{1}\right)=\mathbf{y}_{1}$ and $f\left(\mathbf{x}_{2}\right)=$ \mathbf{y}_{2}. Claim 1 implies that $\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\| \leq 2 \cdot\left\|f\left(\mathbf{x}_{1}\right)-f\left(\mathbf{x}_{2}\right)\right\|$, or in other words, that $\left\|f^{-1}\left(\mathbf{y}_{1}\right)-f^{-1}\left(\mathbf{y}_{2}\right)\right\| \leq 2 \cdot\left\|\mathbf{y}_{1}-\mathbf{y}_{2}\right\|$.

It is now easy to see that given $\varepsilon>0$, we need only choose $\delta=\varepsilon / 2$ to guarantee that if $\left\|\mathbf{y}_{1}-\mathbf{y}_{2}\right\|<\delta$, then $\left\|f^{-1}\left(\mathbf{y}_{1}\right)-f^{-1}\left(\mathbf{y}_{2}\right)\right\|<\varepsilon$.

Claim 4: f^{-1} is differentiable.

Proof of Claim 4:

Let $\mathbf{x} \in V$, let $A=J f(\mathbf{x})$, and let $\mathbf{y}=f(\mathbf{x}) \in W$.
We claim that $J f^{-1}(\mathbf{y})=A^{-1}$.
Define $\varphi(\mathbf{x})=f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-A(\mathbf{h})$.
Then $\lim _{\|\mathbf{h}\| \rightarrow 0} \frac{\|\varphi(\mathbf{h})\|}{\|\mathbf{h}\|}=0$, by the differentiability of f.
Since $\operatorname{det}(A)=\operatorname{det} J f(\mathbf{x}) \neq 0$ by hypothesis, we know that A^{-1} exists, and it is linear since A is. Then:

$$
\begin{aligned}
A^{-1}(f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})) & =\mathbf{h}+A^{-1}(\varphi(\mathbf{h})) \\
& =[(\mathbf{x}+\mathbf{h})-\mathbf{x}]+A^{-1}(\varphi(\mathbf{h}))
\end{aligned}
$$

Letting $\mathbf{y}=f(\mathbf{x})$ and $\mathbf{y}_{1}=f(\mathbf{x}+\mathbf{h})$ on both sides yields:

$$
A^{-1}\left(\mathbf{y}_{1}-\mathbf{y}\right)=\left[f^{-1}\left(\mathbf{y}_{1}\right)-f^{-1}(\mathbf{y})\right]+A^{-1}\left(\varphi\left(f^{-1}\left(\mathbf{y}_{1}\right)-f^{-1}(\mathbf{y})\right)\right)
$$

Re-arranging sides:

$$
\begin{equation*}
A^{-1}\left(\varphi\left(f^{-1}\left(\mathbf{y}_{1}\right)-f^{-1}(\mathbf{y})\right)\right)=\left[f^{-1}\left(\mathbf{y}_{1}\right)-f^{-1}(\mathbf{y})\right]-A^{-1}\left(\mathbf{y}_{1}-\mathbf{y}\right) \tag{2}
\end{equation*}
$$

To show differentiability, we need:

$$
\lim _{\left\|\mathbf{y}_{1}-\mathbf{y}\right\| \rightarrow 0} \frac{\left\|f^{-1}\left(\mathbf{y}_{1}\right)-f^{-1}(\mathbf{y})-A^{-1}\left(\mathbf{y}_{1}-\mathbf{y}\right)\right\|}{\left\|\mathbf{y}_{1}-\mathbf{y}\right\|}=0
$$

but by equation (2) above, this is the same as showing:

$$
\lim _{\left\|\mathbf{y}_{1}-\mathbf{y}\right\| \rightarrow 0} \frac{\left\|A^{-1}\left(\varphi\left(f^{-1}\left(\mathbf{y}_{1}\right)-f^{-1}(\mathbf{y})\right)\right)\right\|}{\left\|\mathbf{y}_{1}-\mathbf{y}\right\|}=0
$$

Since A^{-1} is linear, it suffices to use the Chain Rule and show that:

$$
\begin{equation*}
\lim _{\left\|\mathbf{y}_{1}-\mathbf{y}\right\| \rightarrow 0} \frac{\left\|\varphi\left(f^{-1}\left(\mathbf{y}_{1}\right)-f^{-1}(\mathbf{y})\right)\right\|}{\left\|\mathbf{y}_{1}-\mathbf{y}\right\|}=0 \tag{3}
\end{equation*}
$$

so we factor the expression inside the limit as follows:

$$
\frac{\left\|\varphi\left(f^{-1}\left(\mathbf{y}_{1}\right)-f^{-1}(\mathbf{y})\right)\right\|}{\left\|\mathbf{y}_{1}-\mathbf{y}\right\|}=\frac{\left\|\varphi\left(f^{-1}\left(\mathbf{y}_{1}\right)-f^{-1}(\mathbf{y})\right)\right\|}{\left\|f^{-1}\left(\mathbf{y}_{1}\right)-f^{-1}(\mathbf{y})\right\|} \cdot \frac{\left\|f^{-1}\left(\mathbf{y}_{1}\right)-f^{-1}(\mathbf{y})\right\|}{\left\|\mathbf{y}_{1}-\mathbf{y}\right\|}
$$

The first term on the right tends to 0 because of how we defined φ and the fact that the continuity of f^{-1} means that $f^{-1}\left(\mathbf{y}_{1}\right) \rightarrow$ $f^{-1}(\mathbf{y})$.

Observing that the second term on the right is less than or equal to 2 (by Claim 1) enables us to use the Squeeze Theorem and conclude that the product on the right tends to 0 , which establishes equation (3).

End Proof of Inverse Function Theorem.

(borrowed principally from
Spivak's Calculus on Manifolds)

