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then yields the following three equations of motion for Z(t),
G(t), and α(t):

Ż = �∇H (Z) − G−1∇�(Z), (12)

Ġ = H ′′(Z)�G − G�H ′′(Z) + �′′(Z) − G�′′
�(Z)G, (13)

α̇

α
= −2

h̄
�(Z) − 1

2
tr[�′′

�(Z)G]. (14)

To obtain (13) the symmetry-enforcing convention G = (Gt +
G)/2 was applied. As W depends only on the symmetric part
of G any antisymmetric part is unobservable.

The time evolution of expectation values and variances of
arbitrary observables in Gaussian coherent states for small h̄

is determined by Z(t) and G(t) according to (4) and (5).
Equations (12)–(14) can be interpreted as the hitherto uniden-
tified semiclassical limit of non-Hermitian quantum dynamics.
This result goes beyond previous studies of the non-Hermitian
Ehrenfest theorem [12,13,18] for two reasons. First, previous
studies usually focused on unnormalized expectation values,
which prevented the identification of a classical structure,
and, second, disregarded the role of the metric, related to
the widths of the quantum wave packet. The dynamics (12)
emerging as the classical limit is no longer Hamiltonian, but
has a Hamiltonian part and a gradient part, determined by the
Hermitian and anti-Hermitian parts of Ĥ − i�̂, respectively.
The main dynamical effect of the anti-Hermitian part is to
drive the motion toward the minima of �. In addition, this
gradient part is coupled to an evolution equation (13) for the
metric G, which in turn depends on (12). In this context
it is important to note that (13) preserves the symplectic
nature of G and hence describes an evolution of the complex
structure on phase space. Further, the anti-Hermitian part leads
to a change of the overall probability according to Eq. (14),
which can be interpreted as absorption or amplification.
The first term gives the contribution from the center and
the second term captures the influence of the width of the
Wigner function. Note, however, that after renormalization the
non-Hermitian Schrödinger equation is equivalent to norm-
conserving nonlinear models for quantum dissipation [19].

The quadratic approximation around z = Z(t) to H (z) and
�(z) is expected to remain accurate so long as W (t,z) stays
strongly localized around z = Z(t). Since for a symplectic G

we have ‖G−1‖ = ‖G‖, a suitable criterion for this is

h̄‖G(t)‖  1. (15)

The wave packet becomes delocalized at the Ehrenfest time
TE defined by h̄‖G(TE)‖ = 1, and the semiclassical approxi-
mation based on the central trajectory Z(t) breaks down. The
nonlinear term in the equation for G(t) that is induced by
� can have a stabilizing effect on the long-time evolution
of G(t). Therefore, the non-Hermitian part can increase the
Ehrenfest time, i.e., the time scale for which the semiclassical
approximation is valid, as compared to the Hermitian case.

Examples. To illustrate our results we consider two ex-
amples. The first example is a non-Hermitian anharmonic
oscillator with Ĥ = ω

2 (p̂2 + q̂2) + β

4 q̂4 and �̂ = γ

2 (p̂2 + q̂2),
respectively, with ω = 1, γ = 0.2, and β = 0.5. This can be
interpreted as a quantum analog of a damped anharmonic
oscillator (see, e.g., [13] and references therein). The simple
structure of this model makes it an ideal testing ground for
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FIG. 1. (Color online) Time evolution of the exact Wigner
function (left column) and the semiclassical approximation (right
column) for an initial state at (p,q) = (5,0) at different times
(t = 1,2.5,4) for the anharmonic oscillator. The white line shows
the motion of the center. The left panel on the bottom shows the norm
of the exact quantum state (black dashed line) and the semiclassical
approximation (blue solid line), and the right panel shows the largest
eigenvalue of G(t) (blue line) in comparison with the Hermitian case
γ = 0 (pink upper line).

the semiclassical approximation proposed here. We set h̄ = 1,
which is equivalent to a rescaling upon which β plays the role
of an effective h̄. For β = 0 the semiclassical approximation
becomes exact. While the Hermitian part tries to propagate
a state along closed curves of constant energies around the
origin, the anti-Hermitian part drives it toward the origin,
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FIG. 2. (Color online) Quantum evolution (black dashed line)
versus semiclassical approximation (blue solid line) of a PT-
symmetric waveguide for an initial state at (p,q) = (0,2). Shown
are the phase-space evolution (left) and the evolution of the norm
(right).
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then yields the following three equations of motion for Z(t),
G(t), and α(t):

Ż = �∇H (Z) − G−1∇�(Z), (12)

Ġ = H ′′(Z)�G − G�H ′′(Z) + �′′(Z) − G�′′
�(Z)G, (13)

α̇

α
= −2

h̄
�(Z) − 1

2
tr[�′′

�(Z)G]. (14)

To obtain (13) the symmetry-enforcing convention G = (Gt +
G)/2 was applied. As W depends only on the symmetric part
of G any antisymmetric part is unobservable.

The time evolution of expectation values and variances of
arbitrary observables in Gaussian coherent states for small h̄

is determined by Z(t) and G(t) according to (4) and (5).
Equations (12)–(14) can be interpreted as the hitherto uniden-
tified semiclassical limit of non-Hermitian quantum dynamics.
This result goes beyond previous studies of the non-Hermitian
Ehrenfest theorem [12,13,18] for two reasons. First, previous
studies usually focused on unnormalized expectation values,
which prevented the identification of a classical structure,
and, second, disregarded the role of the metric, related to
the widths of the quantum wave packet. The dynamics (12)
emerging as the classical limit is no longer Hamiltonian, but
has a Hamiltonian part and a gradient part, determined by the
Hermitian and anti-Hermitian parts of Ĥ − i�̂, respectively.
The main dynamical effect of the anti-Hermitian part is to
drive the motion toward the minima of �. In addition, this
gradient part is coupled to an evolution equation (13) for the
metric G, which in turn depends on (12). In this context
it is important to note that (13) preserves the symplectic
nature of G and hence describes an evolution of the complex
structure on phase space. Further, the anti-Hermitian part leads
to a change of the overall probability according to Eq. (14),
which can be interpreted as absorption or amplification.
The first term gives the contribution from the center and
the second term captures the influence of the width of the
Wigner function. Note, however, that after renormalization the
non-Hermitian Schrödinger equation is equivalent to norm-
conserving nonlinear models for quantum dissipation [19].

The quadratic approximation around z = Z(t) to H (z) and
�(z) is expected to remain accurate so long as W (t,z) stays
strongly localized around z = Z(t). Since for a symplectic G

we have ‖G−1‖ = ‖G‖, a suitable criterion for this is

h̄‖G(t)‖  1. (15)

The wave packet becomes delocalized at the Ehrenfest time
TE defined by h̄‖G(TE)‖ = 1, and the semiclassical approxi-
mation based on the central trajectory Z(t) breaks down. The
nonlinear term in the equation for G(t) that is induced by
� can have a stabilizing effect on the long-time evolution
of G(t). Therefore, the non-Hermitian part can increase the
Ehrenfest time, i.e., the time scale for which the semiclassical
approximation is valid, as compared to the Hermitian case.

Examples. To illustrate our results we consider two ex-
amples. The first example is a non-Hermitian anharmonic
oscillator with Ĥ = ω

2 (p̂2 + q̂2) + β

4 q̂4 and �̂ = γ

2 (p̂2 + q̂2),
respectively, with ω = 1, γ = 0.2, and β = 0.5. This can be
interpreted as a quantum analog of a damped anharmonic
oscillator (see, e.g., [13] and references therein). The simple
structure of this model makes it an ideal testing ground for
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FIG. 1. (Color online) Time evolution of the exact Wigner
function (left column) and the semiclassical approximation (right
column) for an initial state at (p,q) = (5,0) at different times
(t = 1,2.5,4) for the anharmonic oscillator. The white line shows
the motion of the center. The left panel on the bottom shows the norm
of the exact quantum state (black dashed line) and the semiclassical
approximation (blue solid line), and the right panel shows the largest
eigenvalue of G(t) (blue line) in comparison with the Hermitian case
γ = 0 (pink upper line).

the semiclassical approximation proposed here. We set h̄ = 1,
which is equivalent to a rescaling upon which β plays the role
of an effective h̄. For β = 0 the semiclassical approximation
becomes exact. While the Hermitian part tries to propagate
a state along closed curves of constant energies around the
origin, the anti-Hermitian part drives it toward the origin,
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FIG. 2. (Color online) Quantum evolution (black dashed line)
versus semiclassical approximation (blue solid line) of a PT-
symmetric waveguide for an initial state at (p,q) = (0,2). Shown
are the phase-space evolution (left) and the evolution of the norm
(right).
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Classical and quantum dynamics in the (non-Hermitian) Swanson oscillator 6

From these results the time dependent metric for arbitrary initial conditions can

explicitly be expressed via equation (17).

The complex canonical equations for p and q are

ṗ = iδp− ω0q

q̇ = ω0p− iδq, (28)

which can be directly solved to find the complex phase-space trajectories for the initial

conditions p(0) = p0 and q(0) = q0 as

p(t) = p0 cosωt+ ω−1
(
− ω0q0 + iδp0

)
sinωt

q(t) = q0 cosωt+ ω−1
(
ω0p0 − iδq0

)
sinωt . (29)

The time dependent metric and the real valued phase-space dynamics can be directly

obtained via equations (17) and (20), respectively. Once the solutions are known the

dynamical equation for the survival probability

ṅ = δ
(
− 2PQ− gpq

)
n (30)

can be integrated as well.
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Figure 1. Phase-space trajectories for different parameter values and initial

conditions. The parameters are ω0 = 1 δ = 0.5, 0.9, 0.99 (from left to right). The

initial conditions for the top panel are (P0, Q0) = (1, 0) and for the bottom panel

(P0, Q0) = (1, 1).

The resulting dynamics is strictly periodic with frequency ω, as it is expected

due to the relation to a harmonic oscillator of that frequency. However, depending on

the initial conditions and the values of the parameters ω0 and δ, divergences in the

dynamical variables can occur. Let us illustrate this point by considering the initial

condition G(0) = I. In this case equation (17) simplifies to

G(t) = (Φpp(t) + Φpq(t))(Φqp(t) + Φqq(t))
−1 . (31)




