
Introduction Boundary Layer Theory - Navier Stokes Complex Singularity Tracking Work in progress

Analysis of complex singularities in high-Reynolds-number
Navier-Stokes solutions

Vincenzo Sciacca

joint work with

Marco Sammartino

Francesco Gargano

Kevin W. Cassel

Department of Mathematics and Computer Science

University of Palermo, Italy

Workshop on PDE’s and Biomedical Applications
December 4-6, 2014, Lisbon, Portugal



Introduction Boundary Layer Theory - Navier Stokes Complex Singularity Tracking Work in progress

Introduction

The interaction of an incompressible fluid at high Reynolds number with a rigid
boundary is one of the main interest phenomena in the classical fluid dynamics theory.

It is in fact known as such interaction is one of the possible mechanisms of the
transition from laminar to turbulent regimes.

Introduction to Boundary Layer Theory

Prandtl equation for the “impulsively started” disk.
Singularity formation.

Comparison between Prandtl and Navier-Stokes solutions

Large-scale and small-scale phenomena.

Complex Singularity Tracking

Padè approximants and Pólya method.

Work in progress
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Navier-Stokes Equations

∂uNS

∂t
+ uNS · 5uNS +5p =

1

Re
∆uNS

5 · uNS = 0,

uNS(x, t = 0) = u0.

Euler Equations

∂uE

∂t
+ uE · 5uE +5p = 0

5 · uE = 0,

uE(x, t = 0) = u0.

Without boundaries, ∥∥∥uNS − uE
∥∥∥→ 0 for Re→ +∞,

Swann Trans AMS 1971 in R3,

Constantin & Wu Nonlinearity 1995 in R2 for initial data of “vortex patch” type.
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Navier-Stokes equations

∂uNS

∂t
+ uNS · 5uNS +5p =

1

Re
∆uNS

5 · uNS = 0,

uNS |∂Ω = 0,

uNS(x, t = 0) = u0.

Euler Equations

∂uE

∂t
+ uE · 5uE +5p = 0

5 · uE = 0,

ν · uE |∂Ω = 0,

uE(x, t = 0) = u0.

The different number of BC generates a Boundary Layer which expands to the
internal flow, due to non-linearity.
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To study the Boundary Layer flux, Prandtl (1904) introduced the following scaling,
valid near the boundary:

Y = y
√
Re with

∂u

∂Y
= O(1).

This implies that:

∂u

∂x
= O(1),

1

Re

∂2u

∂y2
=

1

Re

∂2u

∂Y 2
= O(1) = u

∂u

∂x
. (1)

Prandtl Equations

∂tu
P + uP ∂xu

P + vP ∂Y u
P + ∂xp = ∂Y Y u

P

∂Y p = 0

∂xu
P + ∂Y v

P = 0

uP (x, Y = 0) = vP (x, Y = 0) = 0

uP (x, Y →∞) −→ uE(x, y = 0)

uP (x, y, t = 0) = uin .

The procedure is the following: first solve Euler equations, to obtain the boundary
data uE(y = 0) and then solve Prandtl equation.

Conjecture : uNS = m
(
y
√
Re
)
uE +

(
1−m

(
y
√
Re
))

uP +O
(
Re−

1
2

)
.
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Kato (1984)

The following are equivalent:

lim
Re→+∞

∫ T

0

1

Re

∫
{d(x,∂Ω)< c

Re}

∣∣∣5uNS
∣∣∣2 dxdt = 0.

∥∥∥uNS − uE
∥∥∥→ 0 per Re→ +∞ uniform in t ∈ [0, T ] .

If there is no energy anomalous dissipation at the boundary, in a layer of amplitude
1/Re, and then in the entire domain, then the zero viscosity limit presents no
turbulent behaviour.

If you want to solve the problem of the zero viscosity limit of the NS equations must
be checked or improve (or disprove) Prandtl equations.

Well posedness:

Oleinik 1967 (∂Y uin > 0).

Xin and Zhang ’03 (favourable pressure gradient).

Sammartino and Caflisch 1998 (analytic initial data).

Lombardo, Cannone and Sammartino ’03, ’13 (analytic initial data in the
streamwise direction).
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Singularities for Prandtl equation:

Van Dommelen and Shen ’80:

show numerically, with Lagrangian methods, that Prandtl solutions developed shock
type singularities at a finite time

These results are confirmed in Cowley and Van Dommelen ’90, o Hong e Hunter ’04.

E and Engquist ’97:

prove analytically, that for suitable initial data, different from VDS data, that Prandtl
solutions developed a shock type singularity.

Gargano, Sammartino and S. Physica D ’09:

using the complex singularity tracking method, characterize the Prandtl singularity and
they give the first numerical evidence that Prandtl equations are ill-posed in H1.
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VDS datum

Consider the Prandtl and Navier-Stokes equations in the case of a disk in a uniform
flux, impulsively started. The physical domain is [θ, r]=[0, π]×[a,∞], where a is the
radius of the disk.

U

a

The inviscid irrotational solution of the Eulero equations, given in terms of the
streamfunction (ψx = −v, ψy = u), is the following:

ψ(θ, r) = U(r −
a2

r
) sin(θ),

where U is the streamwise component of the velocity at infinity.
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VDS datum: Prandtl equation

In the case of the impulsively started disk, the equation of Prandtl are the following:

VDS Datum

∂tu+ u∂xu+ v∂Y u− U∂xU = ∂Y Y u [0, π]× [0,∞]

∂xu+ ∂Y v = 0

u(x, 0, t) = v(x, 0, t) = 0

u(x,∞, 0) = U

u(x, y, 0) = U

U = 2 sin(x)

The solution develops a singularity in a finite time

(Van Dommelen & Shen J.Comp.Phys. 80’).

To solve numerically the equation of Prandtl we used a fully-spectral
Fourier-Chebyshev (Pseudo–Spectral τ–method) numerical method and a RK2CN for
the advance in time.
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VDS datum: Prandtl equation

t = 0.4

x
Y
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t = 1.5

Y

x
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20

d)c)

a) b)

The formation of VDS singularity is due to the phenomenon of recirculation:
Formation of a back-flow, and of a “stagnation point”, due to a adverse pressure
gradient at time t ≈ 0.4;

At t ≈ 1 two “counter-rotating” vortex are visible;

The two vortex grow forming a “kink” at t ≈ 1.35 which evolves in a “sharp
spike” at t ≈ 1.5;

The vorticity in the Boundary Layer is expelled to the external flow, and the
normal component of the velocity becomes infinite (in the BL scale) in the
streamwise location of the singularity: separation phenomenon.
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VDS datum: NS equations

The Navier-Stokes equations in the vorticity-streamfunction form:

Vorticity-Streamfunction system

∂ω

∂t
+
u

r

∂ω

∂θ
+ v

∂ω

∂r
=

1

Re
∆θ,rω, [0, π]× [1,∞]

∆θ,rψ = −ω,

u =
∂ψ

∂r
, v = −

1

r

∂ψ

∂θ
,

ω(θ, r, t = 0) = 0,

ω(θ, r →∞, t) → 0,

u(θ, r = 1, t) = v(θ, r = 1, t) = 0.

where ∆θ,r is the Laplacian in cylinder coordinate, and the Reynolds number is

defined as Re = aU
ν

.

To solve numerically NS equations, for different Re (from Re = 103 at Re = 105), we
used a Fourier-Chebyshev fully-spectral Galerkin-Collocation numerical method with
an AD-BDI2 (with the influence matrix method to compute the BC).
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The streamline for Prandtl and NS at different Re.
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Large-Scale interaction

Prandtl Streamlines, t=1.1
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0

5

NS Streamlines, Re=105, t=1.1
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Prandtl
NS −−Re = 105

π

“Wall shear stresses” (the vorticity at the boundary):

τPw = ∂Y u
P
|Y=0

(Prandtl)

τNSw = Re−1/2∂yuNS|y=0
(Navier-Stokes )

The LS interaction appears for all the Re:
The evolution of the flow is similar to that predicted by the BL equation, it is
visible a single region of recirculation. However, one can notice some initial
quantitative differences between Prandtl and NS solutions.
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Small-Scale interaction

Prandtl Streamlines, t=1.35

0.5 1 1.5 2 2.5

NS Streamlines, Re=105, t=1.35
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0

1

2
 t=1.35

 

 

Prandtl
NS −−Re = 105

π

“Wall shear stresses” (the vorticity at the boundary):

τPw = ∂Y u
P
|Y=0

(Prandtl)

τNSw = Re−1/2∂yuNS|y=0
(Navier-Stokes )

For “moderate-high” Re (Re ≥ O(104)) the LS interaction evolves to a small-scale
interaction, characterize:

Splitting of the recirculation region.

Formation of high gradients in the angular direction.
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Complex Singularity Tracking

Let u(Z) = (Z − Z∗)α =
∑∞
k=−∞ ûke

ikZ , be an analytic function with a singularity
of algebraic type α in Z∗ = x∗ + iδ, then the asymptotic behaviour of its Fourier
coefficients is given by the following (Laplace formula):

ûk ∼ C|k|−(1+α) exp (−δk) exp (ix∗k).

The exponential decay rate of the spectrum δ gives the width of the analyticity strip.

singularity 
ℑx 

ℜx 

strip       
of          
analyticity 

δ 

If the complex singularity reaches the real axis, the singularity is shown in the “real
world” as a blow up (of the solution or of its derivatives).
The singularity time ts is the time when δ(ts) = 0. x∗ and α give, respectively, the
real location and the algebraic character of the singularity.
(Sulem, Sulem & Frisch’83, Frish et al., Caflisch, Cowley, Pugh, Shelley, Tanveer)
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Complex Singularity Tracking

Given a function u(z, w) =
∑
h,k ahke

ihzeikw, one defines the “shell–summed Fourier

amplitude” (Frisch et al. ’05) as

AK ≡
∑

K≤|(h,k)|<K+1

ahk.

Using the asymptotic Laplace formula for AK , one can determines the distance δ of
the complex singularity and its algebraic type α.
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Application to Prandtl equation in Della Rocca, Lombardo, Sammartino, S. J. App.
Num. Math. ’05, Gargano, Sammartino, S. Physica D ’09.
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Complex Singularity Tracking

Another possible method (Poincaré 1899, Tsikh 1993), consists to evaluate the
asymptotic Laplace formula to each direction of the bi-dimensional spectrum,

(h, k) = K(cos(θ), sin(θ)).

The distance δ is the minimum between all directions.
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Complex Singularity Tracking

Application to NS Gargano, Sammartino, S., Cassel J. Fluid Mech. ’14
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Complex Singularity Tracking

Application to NS Gargano, Sammartino, S., Cassel J. Fluid Mech. ’14
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Complex Singularity Tracking

Application to NS Gargano, Sammartino, S., Cassel J. Fluid Mech. ’14
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Complex Singularity Tracking

The “singularity tracking method” gives the singularity closest to the real plane. We
analyze the full set of complex singularities considering the wall shear for Prandtl and
NS.

Padé approximants

This methodology allows to determine the position of the complex singularities.

Does not provide clear information regarding the characterization of complex
singularities.

Pólya method

This methodology allows to capture the position and the characterization of “
branches ” or poles of a power series.

When two or more singularities are close together, there are numerical problems.

This method was introduced by Pauls & Frish J. Stat. Phys. 07’.
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Complex Singularity Tracking

Padé approximants: given a complex function as a Taylor (Fourier) series

u(z) =
∞∑
k=0

ukz
k,

the Padé approximants PL/M is the rational function which approximates u:

PL/M : =

∑L
i=0 aiz

i

1 +
∑M
j=1 bjz

j
= u(z) +O

(
zL+M+1

)
,

The ai, bj are determinate from the following linear system (ill− posed):

min(α,M)∑
i=0

bicα−i = aα α = 0, . . . , L;
M∑
i=0

bicL+β−i = 0, β = 1, . . . ,M.

This method only provides information on the location of the various complex
singularity, even those outside the radius of convergence, but does not provide
information on their characterization.
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Complex Singularity Tracking

Pólya method: Let f be an analytic function:

f(z) =
N∑
k=0

ak/z
k+1

︸ ︷︷ ︸
Taylor(Fourier)

.

Let H be the radius of convergence, and
K the the smallest convex and compact
set that contains the singularities. Then:

F define an entire function of
exponential type,

F (ζ) =
N∑
k=0

akζ
k/n!

︸ ︷︷ ︸
Borel−Laplace Transform

the following relation holds k(ϕ) = h(−ϕ) with

h(ϕ) = lim sup
r→∞

ln(F (reiϕ) indicatrix function

k(ϕ) = sup
Z∈K

<(Ze−iϕ) supporting function,

H = supϕ h(ϕ).
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Complex Singularity Tracking

Consider f(z) ∼
∑n
j=1(z − cj)αj−1, with n complex singularities in cj = |cj |e−iγj ,

then the asymptotic behaviour along direction reiϕ, with ϕj−1 < −ϕ < ϕj :∣∣F (reiϕ)
∣∣ = Crαj eh(ϕ)r [1 + ε(r)] ,

h(ϕ) = |cj | cos(ϕ− γj).

From the indicatrix function h(ϕ) (which is a piecewise-cosine function) one
obtains informations of the complex singularity location.

Form αj(ϕ) one obtains the algebraic character of the complex singularity.

High-precision numerical computation is used if two or more singularities are close
together.

Both the method of Padé that Pólya, if applied individually, do not give a complete
picture of the complex singularity of a given function, therefore they should be used
together to provide a solid framework for analysing complex singularity.
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Prandtl Singularity
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Prandtl Singularity
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The Padè approximant P200/200 of τPw at t = 1.5.

τPw at t = 1.5 shows a blow up in its second derivative.
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NS Singularity
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The Padè approximat P300/300 of τNSw for Re = 105 at t = 1.58. Are
distinguishable three distinct groups of singularities.
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NS Singularity

Prandtl syngularity (sP )
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The Padè approximat P300/300 of τNSw for Re = 105 at t = 1.58. Are
distinguishable three distinct groups of singularities.
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NS Singularity

Prandtl singularity (sP )

Large–scale singularity (sls)-related to
the formation of the Large–Scale
interaction.
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The Padè approximat P300/300 of τNSw for Re = 105 at t = 1.58. Are
distinguishable three distinct groups of singularities.
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NS Singularity

Prandtl singularity (sP )

Large–scale singularity (sls)-related to
the formation of the Large–Scale
interaction.

Small–scale singularity (sss)-related to
the formation of the Small–Scale
interaction.
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The Padè approximat P300/300 of τNSw for Re = 105 at t = 1.58. Are
distinguishable three distinct groups of singularities.
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NS: the sP singularity
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NS: the sls singularity
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The comparison between τw of NS (with Re = 103) and Prandtl, and the Padè
approximant P200/200 at t = 1 (a, b) and t = 1.45 (b, d). At t = 1.45, sls is related to
the formation of a gradient in τw close to its minimum.
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NS: the sls singularity
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The evolution in time in the complex plane (θ, θim) of sls. After the large-scale
interaction, the real part of sls moves “upstream” along the cylinder for
Re = 104 − 105, while the opposite occurs for Re = 103.

At TLS the time when the large-scale interaction starts, the singularity remains at
a distance yls from the real axis, which depends on Re as 0.44 ·Re−0.138

(yls → 0 for Re→∞).

The singularities of τNSw have α
sls
NS = 1/2 (t = 1).
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NS: the sss singularity
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The evolution in time in the complex plane (θ, θim) of sss. When the small-scale
interaction starts the singularity is a distance yss from the real axis, which
depends on Re as 0.41 ·Re−0.25 (yss → 0 as Re→∞).

The singularities have α = 1/2.
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The evolution in time of the distance dls in the complex plane between sP and
sls for different Re, and the evolution in time of the distance dss between sP
and sss.

Conclusions:

In both cases, the distance decreases with the increase of Re, and this supports the
conjecture that asymptotically all singularities are reduced to the singularity of Prandtl
sP .



Introduction Boundary Layer Theory - Navier Stokes Complex Singularity Tracking Work in progress

Navier BC:

Navier Boundary Condition:

uNS · ν = 0,
1

Re

(
∂uNS

∂ν
+ CuNS

)
· τ = −β(Re)uNS · τ .

If

lim
Re→+∞

1

Re

(
∂uNS

∂ν

)
= 0,

then each weak limit uNS is a dissipative solution of the Euler equations.

Dirichlet BC: β = ∞

In recent years several of the classical fluid problems of this type have been recast to
model flows on a nanoscale or microscale and the Navier-slip conditions become
relevant in certain applications related to hemodynamics and high-altitude flows as
well.
In the present study Navier boundary conditions allows for slip on the disk, and we
consider β(Re) = Re−α .
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Navier BC:

0 0.1 0.2 0.3 0.4 0.5
0.9

0.95

1
LS time formation

t

 

 
Re = 103

Re = 104

Re = 105

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1.3

1.4

1.5

t

SS time formation 
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β(Re)

β(Re)
The value β = Re−1 is somewhat critical, as for β = Re−α, α < 1 both large–scale and small–scale
interactions forms as in the no-slip case.

For β = Re−1 no reciruclation region forms and viscous-inviscid no interactions are present.

The time formations of both large and small scale interaction are delayed, and as α→ 0 this time tends to
the time determined by the no-slip condition.
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Complex singularity analysis for Navier BC
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Asymptotic no− slip value

For β = Re−1 no complex singularities are detected, while for β = Re−α, α < 1, NS solutions have complex
singularities. As α→ 0 The width of analicity of NS solution tends to that predicted by the slip-case.
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