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Introduction

We study the stability of stationary laminar flows.

Laminar flows occur when a fluid flows in parallel layers, such as
parallel planes (plane flow) or concentric cylinders (pipe flow).

In general, above a critical velocity of the fluid, the laminar flow
becomes unstable giving rise to a mixing of the fluid of different
layers (turbulent flow).

It is important to be able to model and predict such transition,
since many property of the flow depend on it:

Mixing of fluid components

Reduced flow and energy dissipation

Mechanical effects on the boundaries

...
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Physical effects

The instability threshold can be affected by many physical causes,
in this work we examine the effect of

a superimposed magnetic field (for electrically conducting
fluids).

finite slip boundary conditions (graphic).

We will also discuss some literature on the effects of magnetic
fields on blood flow.
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The system

We will study a plane laminar flow, but similar techniques can be
used to study

Flows in tubes

Flows between coaxial cylinders

Laminar flows subject to parallel magnetic fields appear in many
physical systems. Some meaningful examples are

MHD plasma confinement

liquid-metal cooling of nuclear reactors

electromagnetic casting
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The system

We consider an infinite horizontal layer of a homogeneous, viscous,
electrically conducting fluid, permeated by an imposed magnetic
field parallel to the layer.

Let d > 0, Ωd = R2 × (−d,d) and Oxyz be a Cartesian frame of
reference with unit vectors i, j,k, respectively.
We will study laminar flows, subject to a constant external
magnetic field.

- - - - - - - - - - - -
- - - - - -

- - - - - - - -

��
��

��
��H = (H0,H1,0) ��:

6
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z
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Motivations, literature

Stability of this magnetohydrodynamic systems was investigated
since the beginning of the century.

We recall here also some works from prof. Rionero on asymptotic
and nonlinear stability of such systems.

Sulla stabilità asintotica in media in MHD, Ann. Mat. P. Appl.
(1967)

Sulla stabilità asintotica in media in MHD non isoterma,
Ricerche Mat. (1967)

Metodi variazionali per la stabilità asintotica in media in MHD,
Ann. Mat. Pura Appl. (1968)

Sulla stabilità MHD non lineare asintotica in media con vari tipi
di condizioni al contorno, Ricerche di Mat. (1968)

On magnetohydrodynamic stability, Quaderni di Matematica
(1997)
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Sulla stabilità MHD non lineare asintotica in media con vari tipi
di condizioni al contorno, Ricerche di Mat. (1968)

On magnetohydrodynamic stability, Quaderni di Matematica
(1997)

P. Falsaperla (Catania) Laminar magnetic flows... PDE’s and Biom.Appl.-Lisbon 6 / 26



Motivations, literature

Stability of this magnetohydrodynamic systems was investigated
since the beginning of the century.

We recall here also some works from prof. Rionero on asymptotic
and nonlinear stability of such systems.
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Sulla stabilità MHD non lineare asintotica in media con vari tipi
di condizioni al contorno, Ricerche di Mat. (1968)

On magnetohydrodynamic stability, Quaderni di Matematica
(1997)

P. Falsaperla (Catania) Laminar magnetic flows... PDE’s and Biom.Appl.-Lisbon 6 / 26



Motivations, literature

Stability of this magnetohydrodynamic systems was investigated
since the beginning of the century.

We recall here also some works from prof. Rionero on asymptotic
and nonlinear stability of such systems.
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Ann. Mat. Pura Appl. (1968)
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Equations

The fluid is modeled by the following equations (see e.g.
Chandrasekhar, 1961):


Ut + U · ∇U− µ

ρ0
H · ∇H = −∇( p1

ρ0
+ µH2

2ρ0
) + ν∆U

Ht + U · ∇H−H · ∇U = η∆H

∇ ·U = 0, ∇ ·H = 0 ,

where U,H and p1 are the velocity, magnetic and pressure fields,
respectively; ν is the kinematic viscosity, η is the magnetic viscosity
(η = 1

µσ
) with µ the magnetic permeability and σ the electrical

conductivity, ρ0 is the constant density.
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The stationary equations

The stationary equations are
U · ∇U− µ

ρ0
H · ∇H = −∇( p1

ρ0
+ µH2

2ρ0
) + ν∆U

U · ∇H = H · ∇U + η∆H

∇ ·U = 0, ∇ ·H = 0.

And we look in particular for laminar solutions:
U(z), U · k = 0, so U = (U(z),V (z),0), and also H = const.

It can be proved that (unless U ≡ 0) this implies also H · z = 0,
that is H must be coplanar to the flow.
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Boundary conditions

We assume that the boundaries are stationary, and that some
“slip” of the flow is present. We assume also that the medium
surrounding the fluid is electrically non-conducting.


U(x , y ,−d) = U(x , y ,d) = 0

U(d) = −λUz (d), U(−d) = λUz (−d)

V (d) = −λVz (d), V (−d) = λVz (−d)

H(x , y ,−d) = H0i + H1j H(x , y ,d) = H0i + H1j

where H0,H1 ∈ R, H0 6= 0.
The static equations admit then the laminar solutions

H = H0i + H1j

U(z) = Ū0(1− z2

d2+2λd
),V (z) = 0

p1 = −kρ0x + p0

with k and p0 ∈ R, and Ū0 = k(d2+2λd)

2ν
. This general form includes

the rigid case (for λ = 0). Note that we assume here the same
slip length on both boundaries.
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Equations for the perturbations

The non-dimensional equations of a perturbation (u,h) to the
previous solution are

ut + u · ∇u + wU′(z)i + U(z)ux =
Am[H0hx + H1hy + h · ∇h]−∇λ + 1

Re
∆u

ht + u · ∇h + U(z)hx = H0ux + H1uy + hU′(z)i + h · ∇u + 1
Rm

∆h

∇ · u = 0, ∇ · h = 0

in R2 × (−1,1)× (0,+∞), where

h = (h1,h2,h), u = (u, v ,w ), λ = p
ρ0

+ Am|H+h|2
2

.

Re is the Reynolds number Re = Ū0d
ν

,

Rm is the magnetic Reynolds number Rm = Ū0d
η

,

Am = Q2

Re Rm
with the Chandrasekhar number Q2 given by µH2d2

ρ0νη
,

Ū0 is a reference velocity (the maximum of U).
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in R2 × (−1,1)× (0,+∞), where

h = (h1,h2,h), u = (u, v ,w ), λ = p
ρ0

+ Am|H+h|2
2

.

Re is the Reynolds number Re = Ū0d
ν

,

Rm is the magnetic Reynolds number Rm = Ū0d
η

,

Am = Q2

Re Rm
with the Chandrasekhar number Q2 given by µH2d2

ρ0νη
,

Ū0 is a reference velocity (the maximum of U).
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Linearization, periodic perturbations

For a stability study, we investigate the evolution of small
perturbations, we assume also that such fields are periodic in the
x , y plane.

In general a perturbation field f = (f1, f2, f3) is then of
the form

fi = g(z) ∗ e i(α1x+α2y−βt)

where 2π/α1, 2π/α2 are wave lengths in the x and y directions,
and β is the complex frequency.We define also α2 = α2

1 + α2
2, and

c = β/α, and assume for simplicity that the coplanar magnetic field
is directed along x .
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Final equations

Skipping some calculations, the final relevant equations for the
system are

(U − c)Ψ−W = −
i

Rmα
(D2ψ − α2)Ψ

(U − c)(D2 − α2)W −WU′′ −Am(D2 − α2)Ψ = −
i

Reα
(D2 − α2)2W

where Ψ and W contain the z dependency of the z-component of
the perturbing fields, i.e.

h3 = Ψ(z) ∗ e i..., w = W (z) ∗ e i...

D denotes the derivative along z .
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Spectrum for simple Orr-Sommerfeld

The previous equation reduce (necessarily) to the usual
Orr-Sommerfeld equations in the absence of a magnetic field.

They (and the O-S eq.) are an eigensystem in the complex
frequency c, which describes solutions exponentially increasing or
decreasing in time, according to the sign of the imaginary part of
c.

We solved such systems by means of a Chebychev-tau scheme.

The following figures show the spectrum of c in the complex plane
for the OS, for increasing number of Chebychev polynomials.
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Eigenvalues close to Ci = 0 for N = 70 basis vectors per function.



Eigenvalues close to Ci = 0 for N = 90 basis vectors per function.



Eigenvalues close to Ci = 0 for N = 120 basis vectors per function.



Neutral curves

A more detailed investigation looks for the neutral curves in the
α,Re plane, that is values of the couple corresponding to transition
from (linear) stability to instability.

The same graphic, in the presence of an increasing magnetic field,
show the stabilizing effect of H.
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Critical curve in the plane of the wave number a and Reynolds
number Re.



Critical curves in the plane of the wave number a and Reynolds
number Re at different applied magnetic field, for a large value of
the magnetic Reynolds number (Rm = 1).



Effect of partial slip boundaries

The effect of finite slip boundary conditions is very pronounced for
this system.

In the medical literature slip effect are also studied, since they
affect (for example) blood flow in arteries.

In the next graphic, we see that even slip lengths of 0.02 (in units
of the half width of the layer) almost double the critical Reynolds
number even in the absence of a magnetic field,
and their effect is much more relevant if a magnetic field is present.
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Stabilizing effect of finite slip length λ at different magnetic fields
(with Rm = 1).



About blood viscosity

Magnetic fields reduce blood viscosity (Tao and Huang, Phys.
Rev. E 84, 011905 (2011)).

In an “in vitro” experiment, a strong magnetic field is applied for
one minute along the flow direction to a sample of blood in a tube
at body temperature.

Viscosity is reduced by 33% from 7 centipoises (cp) (above
healthy limits) to 4.75 cp. With no further exposure to the field,
the viscosity had only risen slightly to 5.4 cp after 200 min.
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About blood viscosity

The authors state that the effect is probably caused by the
response of iron-rich red blood cells, which are observed to form
chains or elongated aggregates after the application of the field.

A similar effect is difficult to reproduce in a living body, due to the
different orientation and diameter of the blood vessels, but this is
still under investigation.

This is clearly an example of one of the many effects that can
happen in a (non newtonian, and in general very complex) fluid as
blood, which will be worth investigating.
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