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Isogeometric Analysis

Isogeometric analysis (IGA) [Hughes, Cottrell, Bazilevs 2005]
uses NURBS spaces (the same spaces used in CAD) as
discrete spaces for the problem approximation (Galerkin,
Collocation, etc..).

This leads to a series of advantages, including
exact geometry representation;
easier refinement of mesh and spaces;
easy to handle spaces that are highly regular (C1, C2,
etc..) across mesh edges

better efficiency in approximation
application to higher order problems
computation of derived quantities (normals, strains, etc...)
eigenvalues, ...
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B-splines in one dimension

A space of univariate B-splines on the interval [a,b] is uniquely
defined by a polynomial degree p and an (open) knot vector ξ

a = ξ0 = . . . = ξp < ξp+1 ≤ ξp+2 ≤ ... ≤ ξn−1 < ξn = . . . = ξn+p = b

as the span of the basis functions

Sh = span
{

Np
i : i = 1,2, ...,n

}
.

The basis functions Np
i , that depend on ξ and p can be defined

for instance by an iterative formula.



Univariate B-splines

Example of B-spline basis functions in the periodic case,
p = 1,2,3,4 (no knot repetitions):
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Multivariate B-splines and NURBS

B-spline spaces in higher dimensions are built with a tensor
product construction. For instance for d = 2 the basis functions
are (1 ≤ i ≤ n,1 ≤ j ≤ m)

Np,q
i,j (ξ, η) = Np

i (ξ)Nq
j (η) ∀(ξ, η) ∈ [0,1]2,

where the one-dimensional basis functions may be based on
different knot vectors ξ,η and polynomial degrees p,q.

The B-Spline space is defined as the span

Sh = span
{

Np,q
i,j : 1 ≤ i ≤ n,1 ≤ j ≤ m

}
.

Ω̂ = [0,1]2 is the parametric domain.



Multivariate B-splines and NURBS

B-spline spaces in higher dimensions are built with a tensor
product construction. For instance for d = 2 the basis functions
are (1 ≤ i ≤ n,1 ≤ j ≤ m)

Np,q
i,j (ξ, η) = Np

i (ξ)Nq
j (η) ∀(ξ, η) ∈ [0,1]2,

where the one-dimensional basis functions may be based on
different knot vectors ξ,η and polynomial degrees p,q.

NURBS spaces and basis functions (in parametric domain) are
defined by

Nh = span
{

Rp,q
i,j : 1 ≤ i ≤ n,1 ≤ j ≤ m

}
, Rp,q

i,j =
Np,q

i,j

w
,

with w ∈ Sh a positive weight function fixed once and for all.



Geometry and mapped NURBS spaces

The domain of interest Ω is the image of a NURBS map F.

Isoparametric paradigm: The space Nh (and thus Vh) is
obtained by h − p − k refinement of the initial coarse space
used to define F (and w).
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Geometry and mapped NURBS spaces

The domain of interest Ω is the image of a NURBS map F.

F

parametric domain Ω̂ physical domain Ω

{Bi}i=1,...,N2
push forward of {Bi}i=1,...,N2Isoparametric paradigm: The space Nh (and thus Vh) is

obtained by h − p − k refinement of the initial coarse space
used to define F (and w).



Approximation properties of mapped NURBS

It exists a quasi-interpolant Πh : L2(Ω)→ Vh such that

Theorem
It exists C = C(p) ∈ R such that for all K elements of the
physical mesh

|f − Πhf |Hm(K ) ≤ C (hK )s−m |f |Hs(K̃ )
∀f ∈ Hs(Ω),

where K̃ is an extended patch and 0 ≤ m ≤ s ≤ p + 1.

the proof can be found in [Bazilevs, Beirão da Veiga,
Cottrell, Hughes, Sangalli, 2006]
an anisotropic version, obtained with different techniques,
can be found in [Beirão da Veiga, Cho, Sangalli, 2011]
under additional assumptions, full hpk estimates are
derived in [Beirão da Veiga, Buffa, Rivas, Sangalli, 2010]



IGA and preconditioners

Clearly, the condition number of IGA problems grows (as for
FEM) when the space is enriched (in p or h).
Some references for IGA solvers:

N. Collier, D. Pardo, L. Dalcin, M. Paszynski and V.M. Calo. The cost of
continuity: a study of the performance of isogeometric finite elements
using direct solvers. CMAME 2012.

L. Beirão da Veiga, D. Cho, L. F. Pavarino, S. Scacchi, Overlapping
Schwarz methods for Isogeometric Analysis. SINUM 2012.

S. Kleiss, C. Pechstein, B. Juttler, S. Tomar, IETI - Isogeometric Tearing
and Interconnecting. CMAME 2012.

L. Beirão da Veiga, D. Cho, L.F. Pavarino, S. Scacchi, BDDC
preconditioners for Isogeometric Analysis. M3AS 2013.

A. Buffa, H. Harbrecht, A. Kunoth, G. Sangalli, BPX-preconditioning for
isogeometric analysis. CMAME 2013.

...



Overlapping Additive Schwarz preconditioner: the
subdomains partition

We consider the model problem
{
− div(ρ∇u) = f in Ω,

u = 0 on ∂Ω,

which, after discretization, reduces to the variational problem

find uh ∈ Vh : a(uh, v) = (f , v) ∀v ∈ Vh.

The first step is to divide the parametric space into N
non-overlapping subdomains Ωi , e.g. [Toselli-Widlund, 2004].
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Overlapping Additive Schwarz preconditioner: the
subdomains partition

We consider the model problem
{
− div(ρ∇u) = f in Ω,

u = 0 on ∂Ω,

which, after discretization, reduces to the variational problem

find uh ∈ Vh : a(uh, v) = (f , v) ∀v ∈ Vh.

Then extend each subdomain to obtain a partition of the
parametric space into N overlapping subdomains Ω′i
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Overlapping Additive Schwarz preconditioner: the
operator construction

Introduce the local NURBS spaces related to subdomains

Vi := {v ∈ Vh : v(x) = 0 x ∈ Ω\Ω′

i}, i = 1, ...,N

Introduce the coarse NURBS space

V0 ⊂ Vh

Define the projections Ti : Vh → Vi , i = 0, ...,N

a(Tiu,v) = a(u,v) ∀v ∈ Vi .

The two-level Additive Schwarz operator is given by

TOAS = T0 + T1 + ...+ TN = P−1
OASA.

where P−1
OAS is the Additive Schwarz preconditioner and A

the original stiffness matrix.



Overlapping Additive Schwarz preconditioner:
convergence rate bound

Theorem
The condition number of the 2-level additive Schwarz
preconditioned isogeometric operator TOAS is bounded by

κ2(TOAS) ≤ C
(

1 +
H
γ

)
,

where γ = γ(h) is the overlap parameter and C is a constant
independent of h,H,N, γ (but not of degree p and regularity k).

More details and proof in:
L. Beirão da Veiga, D. Cho, L. F. Pavarino, S. Scacchi. Overlapping Schwarz
methods for Isogeometric Analysis. SIAM J. Numer. Anal. 2012



2D tests: OAS scalability in N and optimality in H/h

Quarter of Ring domain

NURBS parameters p = 3, k = 2
2-lev OAS preconditioner with γ = 2h

Condition number κ2(TOAS) and iteration counts it. as a function
of the number of subdomains N and mesh size inverse 1/h:

1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128
N κ2 it. κ2 it. κ2 it. κ2 it. κ2 it.

2× 2 7.30 14 6.98 14 11.44 17 20.58 22 38.97 30
4× 4 8.12 18 10.62 20 19.60 23 37.72 32
8× 8 8.41 19 13.92 21 29.88 27

16× 16 8.32 19 15.50 22
32× 32 8.34 19



Linear Elasticity, 3D tests: OAS scalability in N

3D cubic domain

NURBS parameters p = 3, k = 2
2-lev OAS preconditioner with fixed ratio H/h = 4

Young modulus E = 6e + 6, Poisson ratio ν = 0.3

N γ = 2h γ = 4h
κ2 = λmax/λmin it. κ2 = λmax/λmin it.

2× 2× 2 17.16 = 8.03/0.47 23 9.27 = 8.25/0.89 21
3× 3× 3 22.84 = 8.04/0.35 28 12.80 = 9.68/0.76 25
4× 4× 4 20.06 = 8.04/0.40 27 12.01 = 9.47/0.79 24
5× 5× 5 20.52 = 8.04/0.39 27 12.37 = 9.53/0.77 25
6× 6× 6 20.62 = 8.05/0.39 27 12.51 = 9.56/0.76 25



The Bidomain model of cardiac tissue

Reaction-Diffusion system coupled with an ODEs system.

Given I i,e
app (applied currents per unit volume),

Find v , ue and w (gating variables), such that




χCm
∂v
∂t − div(Di∇(v + ue)) + χIion(v ,w) = I i

app

−div((Di + De)∇ue)− div(Di∇v) = Ie
app + I i

app

∂w
∂t − R(v ,w) = 0

+ 0 Neumann b. c. and initial conditions for v , w .
+ compatibility conditions.
Di,e = conductivity tensors, χ =ratio of membrane area/tissue
volume; Cm =surface capacitance; Iion =ionic current resulting
from the membrane model R.

(see Pennacchio, Savaré, Colli Franzone. SIAM J. Math. Anal. 2006)



Bidomain model: Scalability test

Unprec. 1-level OAS 2-level OAS

N it. κ2 it. κ2 it. κ2

2 × 2 × 1 765 2.85e4 14 10.34 11 5.72
4 × 4 × 1 1236 4.92e4 27 58.61 10 6.62
6 × 6 × 1 1539 7.30e4 35 1.42e2 9 6.27
8 × 8 × 1 1949 1.01e5 47 2.66e2 8 5.53

10 × 10 × 1 2180 1.14e5 55 4.52e2 8 5.50
12 × 12 × 1 2307 1.25e5 63 6.67e2 8 5.50

L. A. Charawi. Isogeometric Overlapping Additive Schwarz Preconditioners in
Computational Electrocardiology. PhD Thesis, University of Milan, 2014



A BDDC preconditioner

We will now present a Balancing Domain Decomposition by
Constraints (BDDC) preconditioner for Isogeometric Analysis of
elliptic problems in primal form (standard diffusion model
problem).

BDDC was introduced in [Dohrmann, 2003] and analyzed
first in [Mandel, Dohrmann, 2003]

the results presented in this talk can be found in
[Beirão da Veiga, Cho, Pavarino, S., M3AS, 2013];
[Beirão da Veiga, Pavarino, S., Widlund, Zampini, SISC,
2014].



Schur complement system

We consider the model problem
{
− div(ρ∇u) = f in Ω,

u = 0 on ∂Ω.

As usual, the first step is to divide the parametric space into
(rectangular) subdomains, e.g. [Toselli-Widlund, 2004].

In the case of IGA, the higher continuity (and thus the larger
support) of basis functions means that in general one cannot
reduce the problem to the skeleton.
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Schur complement system

The concept of a “fat boundary” (that is easily understood in
terms of degrees of freedom) must be introduced.

Example (in index space, dim.= 2):
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Primal (coarse) degrees of freedom (dim.= 2)

The coarse space degrees of freedom are associated to “fat
corners”:

Primal dof (blue in figure)
Dual dof (red in figure)
Interior condensed dof (white in figure)



Choice of scaling operators

We propose and analyze three possible choices:

“Standard” ρ scaling:

δ
(k)†
ij = ρk/

( ∑

`∈Nij

ρ`

)
.

Stiffness scaling (balances energy of basis functions):

δ
(k)†
ij = sk (Np,q

i,j ,N
p,q
i,j )/

( ∑

`∈Nij

s`(N
p,q
i,j ,N

p,q
i,j )

)
.

Deluxe scaling (balances the local Schur complements),
first introduced in Dohrmann and Widlund 2013



Theoretical condition number bounds

Theorem
The condition number of the BDDC preconditioned
isogeometric operator is bounded by

κ2(P) ≤ C
(

1 + log2(H/h)
)

ρ and deluxe scaling,

κ2(P ′) ≤ C
(

1 + log
(H

h

)) H
h

stiffness scaling,

where the constant C is independent of H (subdomain size), h
(fine mesh size).



2D tests: BDDC quasi-optimality

Quarter of Ring domain (2D):

NURBS parameters p = 2, k = 1
BDDC preconditioner with N = 4× 4 subdomains

ρ-scal. stiff.-scal. deluxe-scal.
H/h κ2 it. κ2 it. κ2 it.

4 4.16 14 2.01 9 1.79 8
8 3.90 14 3.83 13 2.46 9
16 3.83 14 8.05 16 3.22 10
32 4.50 14 16.50 21 4.11 12
48 5.03 15 33.73 25 4.68 12



2D tests: BDDC quasi-optimality

Condition numbers κ2 of the BDDC preconditioned system with
respect to the ratio H

h
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2D tests: BDDC scalability

Quarter of Ring domain (2D):

NURBS parameters p = 2, k = 1
BDDC preconditioner with fixed ratio H/h = 4

ρ-scal. stiff.-scal. deluxe-scal.
N κ2 it. κ2 it. κ2 it.

2× 2 3.72 12 1.65 8 1.17 5
4× 4 4.16 14 2.01 9 1.79 8
8× 8 4.20 14 2.27 10 2.11 9

16× 16 4.07 14 2.41 10 2.30 10
32× 32 3.97 13 2.50 11 2.40 10



2D tests: BDDC behavior for high p, k

Quarter of Ring domain (2D):

Maximal spline regularity k = p − 1
BDDC preconditioner with fixed ratio H/h = 16 and N = 4× 4
subdomains

ρ-scal. stiff.-scal. deluxe-scal.
p κ2 it. κ2 it. κ2 it.
2 3.83 14 8.15 16 3.22 10
3 76.52 53 15.05 20 2.68 10
4 2838.56 141 11.09 22 2.41 9
5 147769.26 548 31.62 35 2.19 9
6 84.75 71 2.04 9
7 333.84 113 1.91 8
8 1031.59 229 1.80 8
9 3830.01 388 1.72 8

10 12761.38 807 1.62 9



3D tests: BDDC scalability

NURBS parameters p = 3, k = 2
BDDC preconditioner with fixed
ratio H/h = 6
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stiff.-scal. deluxe-scal.
N κ2 it. κ2 it.

2× 2× 2 8.94 24 1.67 9
3× 3× 3 9.21 27 1.81 10
4× 4× 4 9.27 28 1.85 10
5× 5× 5 9.35 28 1.86 10
6× 6× 6 9.38 29 1.92 10



Conclusions

Isogeometric analysis is a fast growing recent (2005)
technology for the numerical approximation of PDEs

Preconditioners and solvers in IGA are needed for large
scale problems

We have presented OAS and BDDC preconditioners for
IGA, together with theoretical results on scalability and
quasi-optimality

2D and 3D numerical results have validated the theoretical
estimates


