Motion of aerobic bacteria in liquids

Dmitry Vorotnikov

Universidade de Coimbra

December 6, 2014, Hotel VIP Zurique

Dmitry Vorotnikov: Motion of aerobic bacteria in liquids

Flagellated aerobic bacteria in liquids

- Bacillus subtilis in water
- Pseudomonas aeruginosa in blood
- Legionella pneumophila in Vila Franca de Xira, Portugal (November 2014)

Flagellated aerobic bacteria in liquids

- oxytaxis
- metabolism
- cell–cell signaling
- buoyancy
- diffusion
- mixing
- proliferation/death

PDE model

$$\partial_t n + u \cdot \nabla n - \Delta(n^m) = -\nabla \cdot (\chi(c)n\nabla c) + f(n),$$
 (1)

$$\partial_t c + u \cdot \nabla c - \Delta c = -k(c)n,$$
 (2)

$$\partial_t u + u \cdot \nabla u - \Delta u + \nabla p = -n \nabla \phi, \qquad (3)$$

$$\nabla \cdot u = 0, \tag{4}$$

$$\frac{\partial n^{m}(t,x)}{\partial \nu} = 0, \ \frac{\partial c(t,x)}{\partial \nu} = 0, \ u(t,x) = 0, \ x \in \partial \Omega,$$
 (5)

$$n(0,x) = n_0(x), \ c(0,x) = c_0(x), \ u(0,x) = u_0(x), \ x \in \Omega.$$
 (6)

Dmitry Vorotnikov: Motion of aerobic bacteria in liquids

Involved quantities

T > 0,

 $\Omega \subset \mathbb{R}^d$, with d = 2, 3, a bounded domain or the whole space \mathbb{R}^d itself,

 $Q_T = (0, T) \times \Omega$,

c(t,x) : $Q_T \to \mathbb{R}$, n(t,x) : $Q_T \to \mathbb{R}$ are the oxygen and cell concentrations, resp.,

 $u(t, x) : Q_T \to \mathbb{R}^d$ is the fluid velocity, $p(t, x) : Q_T \to \mathbb{R}$ is the hydrostatic pressure,

The scalar functions k, χ and f determine the oxygen consumption rate, chemotactic sensitivity, and bacterial growth, resp.,

 $\phi: Q_T \to \mathbb{R}$ is the physical potential,

 $m \ge 1$ is the nonlinear diffusion exponent.

The cases m = 1 and $f \equiv 0$ are not excluded.

Previous results (m = 1, full Navier-Stokes)

- Existence of local weak solutions.
- 2D: Under some more or less restrictive assumptions on k and χ , and on the domain $\Omega \subset \mathbb{R}^2$ (bounded and convex/whole plane), one can prove existence of global regular/weak solutions.
- 3D: Global regular/weak solutions exist for Ω = ℝ³ when the initial datum is a small smooth perturbation of the steady state (n₀ = const, 0, 0), or when k/χ = const, or when χ = const and k is a linear function.

(see Winkler 2012, Winkler 2014, Chae et al. 2011, Lorz 2010, Di Francesco et al. 2010)

The supercritical case

Let $m > \frac{d+1}{3}$. Let $\phi \in L_1(0, T; L_{1,loc})$ with $\nabla \phi \in L_2(0, T; L_{\infty})$. Let k, χ and f be continuously differentiable functions, $\chi' \ge 0$, $k \ge 0$, k(0) = 0, $f(0) \ge 0$ (but f(0) = 0 for $\Omega = \mathbb{R}^d$) and

$$f(y) \le f(0) + Cy \tag{7}$$

for $y \ge 0$. Let $n_0 \in L_1 \cap L_{\max(1,m/2)}$, $n_0 \ln n_0 \in L_1$, $\langle \cdot \rangle n_0(\cdot) \in L_1$, $c_0 \in H^1 \cap L_{\infty}$, $n_0 \ge 0$, $c_0 \ge 0$, $u_0 \in H$. Then problem (1)–(6) possesses a nonnegative ¹ weak solution $(c, n, u)^{2/3}$.

¹i.e. $c, n \ge 0$ ²roughly speaking, in a Leray-Hopf sense ³Here, $\langle x \rangle = \sqrt{1 + |x|^2}$ for $\Omega = \mathbb{R}^d$, and $\langle x \rangle = 1$ for bounded Ω

Dmitry Vorotnikov: Motion of aerobic bacteria in liquids

The subcritical case

Let $1 \le m \le \frac{d+1}{3}$. Suppose that

$$f(y) + C_f y^2 \le f(0) + Cy$$
 (8)

with some positive C_f independent of $y \ge 0$, and the remaining assumptions of the previous page hold. Then problem (1)–(6) possesses a nonnegative weak solution.

Moreover, if $\Omega = \mathbb{R}^2$, m = 1, f, χ and k are C^3 -smooth, $f'(y) + |f''(y)| \leq C$ for $y \geq 0$, $\nabla \phi \in W^2_{\infty}$ (and independent of t), $n_0 \in H^2$, $c_0 \in H^3$, $u_0 \in H^3$, there exists a unique nonnegative classical solution to (1)–(6).

Attractors without uniqueness

Basic framework (V. and Zvyagin, 2008):

Let *E* and *E*₀ be Banach spaces, $E \subset E_0$, *E* is reflexive. Fix some set

 $\mathcal{H}^+ \subset C([0, +\infty); E_0) \cap L_\infty(0, +\infty; E)$

of solutions (strong, weak, etc.) for any given autonomous differential equation or boundary value problem. Hereafter, the set \mathcal{H}^+ will be called the *trajectory space* and its elements will be called *trajectories*. Generally speaking, the nature of \mathcal{H}^+ may be different from the just described one.

Let T(h) be the translation (shift) operator,

$$T(h)(u)(t) = u(t+h).$$

Attracting and absorbing sets

A set $P \subset C([0, +\infty); E_0) \cap L_{\infty}(0, +\infty; E)$ is called *attracting* (for the trajectory space \mathcal{H}^+) if for any set $B \subset \mathcal{H}^+$ which is bounded in $L_{\infty}(0, +\infty; E)$, one has

$$\sup_{u\in B}\inf_{v\in P}\|T(h)u-v\|_{C([0,+\infty);E_0)}\xrightarrow[h\to\infty]{\to} 0.$$

A set $P \subset C([0, +\infty); E_0) \cap L_{\infty}(0, +\infty; E)$ is called *absorbing* (for the trajectory space \mathcal{H}^+) if for any set $B \subset \mathcal{H}^+$ which is bounded in $L_{\infty}(0, +\infty; E)$, there is $h \ge 0$ such that $T(t)B \subset P$ for all $t \ge h$.

Dmitry Vorotnikov: Motion of aerobic bacteria in liquids

A set $\mathcal{U} \subset C([0, +\infty); E_0) \cap L_{\infty}(0, +\infty; E)$ is called the *minimal* trajectory attractor (for the trajectory space \mathcal{H}^+) if i) \mathcal{U} is compact in $C([0, +\infty); E_0)$ and bounded in $L_{\infty}(0, +\infty; E)$; ii) $T(t)\mathcal{U} = \mathcal{U}$ for any $t \ge 0$; iii) \mathcal{U} is attracting;

iv) \mathcal{U} is contained in any other set satisfying conditions i), ii), iii).

A set $\mathcal{A} \subset E$ is called the *global attractor* (in E_0) for the trajectory space \mathcal{H}^+ if i) \mathcal{A} is compact in E_0 and bounded in E; ii) for any bounded in $L_{\infty}(0, +\infty; E)$ set $B \subset \mathcal{H}^+$ the attraction

property is fulfilled:

$$\sup_{u\in B}\inf_{v\in\mathcal{A}}\|u(t)-v\|_{E_0}\underset{t\to\infty}{\to}0;$$

iii) A is the minimal set satisfying conditions i) and ii).

Attractors for our model: basic assumptions

a) Ω is bounded.

b) m > 2 (although m > (d + 1)/3 is enough for the dissipative estimates).

c) $\phi \in L_1, \ \nabla \phi \in L_\infty.$

d) k, χ and f are continuously differentiable functions, $\chi' \ge 0$, $k \ge 0$, k(0) = 0.

e) The initial concentration of oxygen does not exceed some constant $c_{\mathcal{O}}$: this unusual assumption is to overcome the presence of steadystate solutions ($n \equiv 0, c \equiv c_0, u \equiv 0$) with arbitrarily large constants c_0 which impede existence of attractors.

f) There exists a positive number γ so that

$$f(y) + 2\gamma y \le C, \ y \ge 0, \tag{9}$$

g)

$$|f(y)| \leq C(y^m+1), \ y \geq 0$$
 , where $x \in \{10\}$ and (10)

Dmitry Vorotnikov: Motion of aerobic bacteria in liquids

Existence of attractors

Let

$$E = L_{m/2} \times H^1 \times H$$

and

$$E_0 = W_{m/2}^{-\delta} \times H^{1-\delta} \times V_{\delta}^*,$$

where $\delta \in (0,1]$ is a fixed number. Then the trajectory space \mathcal{H}^+ consisting of all admissible weak solutions to (1)–(5) possesses a minimal trajectory attractor and a global attractor in the above sense.

Open problems seeming to be manageable

- Global existence in the subcritical case for classes of kinetic functions containing f = 0
- Similar setting in non-Newtonian/viscoelastic fluids, e.g., blood; non-Newtonian effects due to large densities of cells
- Attractors for $m \le 2$: technical obstacle is the non-reflexivity of L_1
- Does the attractor merely consist of the steady-state solutions, or it is more complex?
- Other boundary conditions

THANK YOU

Dmitry Vorotnikov: Motion of aerobic bacteria in liquids