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Flagellated aerobic bacteria in liquids

Bacillus subtilis in water

Pseudomonas aeruginosa in blood

Legionella pneumophila in Vila Franca de Xira, Portugal
(November 2014)
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Flagellated aerobic bacteria in liquids

oxytaxis

metabolism

cell–cell signaling

buoyancy

diffusion

mixing

proliferation/death

Dmitry Vorotnikov: Motion of aerobic bacteria in liquids Universidade de Coimbra



PDE model

∂tn + u · ∇n −∆(nm) = −∇ · (χ(c)n∇c) + f (n), (1)

∂tc + u · ∇c −∆c = −k(c)n, (2)

∂tu + u · ∇u −∆u +∇p = −n∇φ, (3)

∇ · u = 0, (4)

∂nm(t, x)

∂ν
= 0,

∂c(t, x)

∂ν
= 0, u(t, x) = 0, x ∈ ∂Ω, (5)

n(0, x) = n0(x), c(0, x) = c0(x), u(0, x) = u0(x), x ∈ Ω. (6)
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Involved quantities

T > 0,
Ω ⊂ Rd , with d = 2, 3, a bounded domain or the whole space Rd

itself,
QT = (0, T )× Ω,
c(t, x) : QT → R, n(t, x) : QT → R are the oxygen and cell
concentrations, resp.,
u(t, x) : QT → Rd is the fluid velocity, p(t, x) : QT → R is the
hydrostatic pressure,
The scalar functions k, χ and f determine the oxygen consumption
rate, chemotactic sensitivity, and bacterial growth, resp.,
φ : QT → R is the physical potential,
m ≥ 1 is the nonlinear diffusion exponent.
The cases m = 1 and f ≡ 0 are not excluded.
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Previous results (m = 1, full Navier-Stokes)

Existence of local weak solutions.

2D: Under some more or less restrictive assumptions on k and
χ, and on the domain Ω ⊂ R2 (bounded and convex/whole
plane), one can prove existence of global regular/weak
solutions.

3D: Global regular/weak solutions exist for Ω = R3 when the
initial datum is a small smooth perturbation of the steady
state (n0 = const, 0, 0), or when k/χ = const, or when
χ = const and k is a linear function.

(see Winkler 2012, Winkler 2014, Chae et al. 2011, Lorz 2010, Di
Francesco et al. 2010)
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The supercritical case

Let m > d+1
3 . Let φ ∈ L1(0,T ; L1,loc) with ∇φ ∈ L2(0,T ; L∞). Let

k , χ and f be continuously differentiable functions, χ′ ≥ 0, k ≥ 0,
k(0) = 0, f (0) ≥ 0 (but f (0) = 0 for Ω = Rd) and

f (y) ≤ f (0) + Cy (7)

for y ≥ 0.
Let n0 ∈ L1 ∩ Lmax(1,m/2), n0 ln n0 ∈ L1, 〈·〉n0(·) ∈ L1, c0 ∈ H1 ∩
L∞, n0 ≥ 0, c0 ≥ 0, u0 ∈ H. Then problem (1)–(6) possesses a
nonnegative 1 weak solution (c , n, u) 2 3.

1i.e. c, n ≥ 0
2roughly speaking, in a Leray-Hopf sense
3Here, 〈x〉 =

√
1 + |x |2 for Ω = Rd , and 〈x〉 = 1 for bounded Ω
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The subcritical case

Let 1 ≤ m ≤ d+1
3 . Suppose that

f (y) + Cf y2 ≤ f (0) + Cy (8)

with some positive Cf independent of y ≥ 0, and the remaining
assumptions of the previous page hold. Then problem (1)–(6) pos-
sesses a nonnegative weak solution.
Moreover, if Ω = R2, m = 1, f , χ and k are C 3-smooth, f ′(y) +
|f ′′(y)| ≤ C for y ≥ 0, ∇φ ∈ W 2

∞ (and independent of t), n0 ∈
H2, c0 ∈ H3, u0 ∈ H3, there exists a unique nonnegative classical
solution to (1)–(6).
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Attractors without uniqueness

Basic framework (V. and Zvyagin, 2008):
Let E and E0 be Banach spaces, E ⊂ E0, E is reflexive. Fix some
set

H+ ⊂ C ([0,+∞); E0) ∩ L∞(0,+∞; E )

of solutions (strong, weak, etc.) for any given autonomous differ-
ential equation or boundary value problem. Hereafter, the set H+

will be called the trajectory space and its elements will be called
trajectories. Generally speaking, the nature of H+ may be different
from the just described one.
Let T (h) be the translation (shift) operator,

T (h)(u)(t) = u(t + h).
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Attracting and absorbing sets

A set P ⊂ C ([0,+∞); E0)∩ L∞(0,+∞; E ) is called attracting (for
the trajectory space H+) if for any set B ⊂ H+ which is bounded
in L∞(0,+∞; E ), one has

sup
u∈B

inf
v∈P
‖T (h)u − v‖C([0,+∞);E0) →h→∞ 0.

——————————————————————————
A set P ⊂ C ([0,+∞); E0) ∩ L∞(0,+∞; E ) is called absorbing (for
the trajectory space H+) if for any set B ⊂ H+ which is bounded
in L∞(0,+∞; E ), there is h ≥ 0 such that T (t)B ⊂ P for all t ≥ h.
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A set U ⊂ C ([0,+∞); E0) ∩ L∞(0,+∞; E ) is called the minimal
trajectory attractor (for the trajectory space H+) if
i) U is compact in C ([0,+∞); E0) and bounded in L∞(0,+∞; E );
ii) T (t)U = U for any t ≥ 0;
iii) U is attracting;
iv) U is contained in any other set satisfying conditions i), ii), iii).
——————————————————————
A set A ⊂ E is called the global attractor (in E0) for the trajectory
space H+ if
i) A is compact in E0 and bounded in E ;
ii) for any bounded in L∞(0,+∞; E ) set B ⊂ H+ the attraction
property is fulfilled:

sup
u∈B

inf
v∈A
‖u(t)− v‖E0 →t→∞ 0;

iii) A is the minimal set satisfying conditions i) and ii).
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Attractors for our model: basic assumptions

a) Ω is bounded.
b) m > 2 (although m > (d + 1)/3 is enough for the dissipative
estimates).
c) φ ∈ L1, ∇φ ∈ L∞.
d) k , χ and f are continuously differentiable functions, χ′ ≥ 0, k ≥
0, k(0) = 0.
e) The initial concentration of oxygen does not exceed some constant
cO: this unusual assumption is to overcome the presence of steady-
state solutions (n ≡ 0, c ≡ c0, u ≡ 0) with arbitrarily large constants
c0 which impede existence of attractors.
f) There exists a positive number γ so that

f (y) + 2γy ≤ C , y ≥ 0, (9)

g)
|f (y)| ≤ C (ym + 1), y ≥ 0. (10)
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Existence of attractors

Let
E = Lm/2 × H1 × H

and
E0 = W−δ

m/2 × H1−δ × V ∗δ ,

where δ ∈ (0, 1] is a fixed number. Then the trajectory space H+

consisting of all admissible weak solutions to (1)–(5) possesses a
minimal trajectory attractor and a global attractor in the above
sense.
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Open problems seeming to be manageable

Global existence in the subcritical case for classes of kinetic
functions containing f = 0

Similar setting in non-Newtonian/viscoelastic fluids, e.g.,
blood; non-Newtonian effects due to large densities of cells

Attractors for m ≤ 2: technical obstacle is the non-reflexivity
of L1

Does the attractor merely consist of the steady-state
solutions, or it is more complex?

Other boundary conditions
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THANK YOU
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