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The SIS model

S + I α→ 2I;

I
β→ S.

(1)

Classical SIS-ODE:

Ṡ = −ᾱSI + β̄I
İ = ᾱSI − β̄I

.



Without loss of generality, that S(0) + I(0) = 1:

I′ = ᾱI
(

1− β̄

ᾱ
− I
)
. (2)

Let R̄0 := ᾱ/β̄ .

lim
t→∞

I(t) =

{
0, R̄0 <= 1;

I∗ = 1− 1
R̄0
, R̄0 > 1.



SIS-DTMC

I If he or she is of type I, then it becomes S with probability
β;

I If he or she is of type S, then it becomes I with probability
proportional to the number of infected in the population:
αx .

T +(x) = αx(1− x) ,

T 0(x) = 1− T +(x)− T−(x) ,

T−(x) = xβ .



Let P(N,∆t)(x , t) be the probability to find a fraction x of I
individuals at time t in a population of size N, evolving in time
steps of size ∆t .
The master equation is:

P(N,∆t)(x , t + ∆t) = T +(x − z)P(N,∆t)(x − z, t)

+ T 0(x)P(N,∆t)(x , t)

+ T−(x + z)P(N,∆t)(x + z, t).



Let p(N,∆t)(x , t) = NP(N,∆t)(x , t), and ε = 1/N.
If p(N,∆t) is a smooth function then it need to satisfy

∂tp = −∂x {x [R0(1− x)− 1] p}+
ε

2
∂2

x {x(R0(1− x) + 1)p}+O(ε2),

ε

2
((1− R0)p(1, t) + ∂xp(1, t)) + p(1, t) = 0

Theorem
For smooth initial conditions, Lax-Richtmyer equivalence
theorem implies that p(N,∆t) → p pointwise, as ε→ 0, where p
satisfies

∂tp + ∂x {x [R0(1− x)− 1] p} = 0 PDE form of SIS-ODE
p(1, t) = 0.



Write
u(x , t) = x [R0(1− x)− 1] p(x , t)

Then u satisfies

∂tu = x [R0(1− x)− 1] ∂xu.

Hence

p(x , t) =
φ−t (x) [R0(1− φ−t (x))− 1]

x [R0(1− x)− 1]
p0(φ−t (x))

where φt is the flowmap for the SIS-ODE.



Want to keep finite population effects — do not send ε→ 0
Look for solution to

∂tp = −∂x {x [R0(1− x)− 1] p}+
ε

2
∂2

x {x(R0(1− x) + 1)p}+O(ε2),

ε

2
((1− R0)p(1, t) + ∂xp(1, t)) + p(1, t) = 0

p(x ,0) = p0(x);

d
dt

∫ 1

0
p(x , t) dx = 0;

lim
t→∞

p(·, t) = δ0.



∫ ∞
0

∫ 1

0
p(x , t)∂tg(x , t)dxdt+

+
ε

2

∫ ∞
0

∫ 1

0
p(x , t)x (R0(1− x) + 1) ∂2

x g(x , t)dxdt∫ ∞
0

∫ 1

0
p(x , t)x (R0(1− x)− 1) ∂xg(x , t)dxdt + (3)∫ 1

0
p(x ,0)g(x ,0)dx = 0,

where
g ∈ C∞c ([0,1]× [0,∞)), ∂xg(1, t) = 0.



Proposition
If p ∈ L∞

(
[0,∞);BM+([0,1])

)
is a solution to (3) then

d
dt

∫ 1

0
p(x , t) dx = 0.



Theorem
Let p0(x) ∈ BM+([0,1]). Then Equation (3) has a unique
solution p ∈ L∞

(
[0,∞);BM+([0,1])

)
, that is given by

p(x , t) = a(t)δ0 + r(x , t)

where r satisfies

∂t r = −∂x {x [R0(1− x)− 1] r}+
ε

2
∂2

x {x(R0(1− x) + 1)r} ,
ε

2
((1− R0)r(1, t) + ∂x r(1, t)) + r(1, t) = 0

r(x ,0) = r0 + b0δ1

and

a(t) =
ε(R0 + 1)

2

∫ t

0
r(0, s) ds + a0.



Proposition
Given the representation of p above, we also have

lim
t→∞

r(x , t) = 0 and lim
t→∞

a(t) = 1.

In particular,
lim

t→∞
p(·, t) = δ0

















I For the Moran process an inverse numerical analysis
argument yields

−
∫ ∞

0

∫ 1

0
p(x , t)∂tg(x , t) dx dt −

∫ 1

0
p(x , t0)g(x , t0) dx

=
κ

2

∫ ∞
0

∫ 1

0
p(x , t)

(
x(1− x)∂2g(x , t)

)
dx dt (4)

+

∫ ∞
0

∫ 1

0
p(x , t)

[
x
(
ψ(x)− ψ̄(x)

)
∂g(x , t)

]
dx dt .

I p(x , t) = a(t)δ0 + q(x , t) + b(t)δ1, with q being the unique
L2 classical solution to (4).



I Also
lim

t→∞
q(x , t) = 0.

Additionally, we have the following conservation laws:

d
dt

∫ 1

0
p(x , t) dx = 0 and

d
dt

∫ 1

0
φ(x)p(x , t) dx = 0,

φ′′ + x
(
ψ(x)− ψ̄(x)

)
φ′ = 0, φ(0) = 0, φ(1) = 1.



I Results extended to multidimensional Wright-Fisher
process via measure solutions.

I Similar derivation for infinite population limit of SIR model
I Derivation of three Holling functional responses for Lotka

type predator-prey models.
I Approximation of slow manifold via center-manifold theory

in other scalings.
I Multiscale reduction for Wolbachia models recovering

invasion thresholds by Turelli et al.
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