Scalable Solvers for Cardiac Electromechanical Models

Luca F. Pavarino
Università di Milano, Italy

P. Colli Franzone, Università di Pavia, Italy S. Scacchi, Università di Milano, Italy
S. Zampini, KAUST, Saudi Arabia

Workshop on PDE's and Biomedical Applications
Lisbon, 4-6 December 2014

Coupled multiphysics in cardiac modeling

Cardiac Electrophysiology
Cardiac Mechanics
Cardiac Fluidodynamics

1. Cardiac bioelectrical model: the Bidomain system

Reaction-Diffusion system of degenerate parabolic PDEs:

- Given $l_{a p p}^{i, e}$ (applied current), v_{0}, w_{0} (initial conditions)
- find $u_{i}, u_{e}=$ intra and extracellular potentials, (and $v=u_{i}-u_{e}=$ transmembrane potential), $w=$ gating variables and $c=$ ion concentrations such that:

1. Cardiac bioelectrical model: the Bidomain system

Reaction-Diffusion system of degenerate parabolic PDEs:

- Given lapp (applied current), v_{0}, w_{0} (initial conditions)
- find $u_{i}, u_{e}=$ intra and extracellular potentials, (and $v=u_{i}-u_{e}=$ transmembrane potential), $w=$ gating variables and $c=$ ion concentrations such that:

Bidomain system (P-P formulation):

$$
\begin{array}{ll}
\rho C_{m} \frac{\partial v}{\partial t}-\operatorname{div}\left(D_{i} \nabla u_{i}\right)+\rho l_{i o n}(v, w, c)=-l_{a p p}^{i} & \text { in } \Omega \times(0, T) \\
-\rho C_{m} \frac{\partial v}{\partial t}-\operatorname{div}\left(D_{e} \nabla u_{e}\right)-\rho l_{i o n}(v, w, c)=l_{a p p}^{e} & \text { in } \Omega \times(0, T) \\
\frac{\partial w}{\partial t}=R(v, w), \quad \quad \frac{\partial c}{\partial t}=S(v, w, c) & \text { in } \Omega \times(0, T)
\end{array}
$$

with 0 Neumann b.c. for u_{i}, u_{e}, initial conditions for v, w, c $\rho=$ ratio membrane area/tissue volume, $C_{m}=$ surface capacitance Colli Franzone, LFP, Scacchi, Mathematical Cardiac Electrophysiology, Springer, 2014

Conductivity tensors:

$$
D_{i, e}(\mathbf{x})=\sigma_{l}^{i, e} \mathbf{a}_{l} \mathbf{a}_{l}^{T}+\sigma_{n}^{i, e} \mathbf{a}_{n} \mathbf{a}_{n}^{T}+\sigma_{t}^{i, e} \mathbf{a}_{t} \mathbf{a}_{t}^{T}
$$

$\sigma_{l}^{i, e}, \quad \sigma_{n}^{i, e}, \quad \sigma_{t}^{i, e}=$ conductivity coefficients along directions $\mathbf{a}_{/}$: along fiber, \mathbf{a}_{n} : normal to lamina, $\mathbf{a}_{t}=$ tangent to lamina \Rightarrow electrical conductivity depends on fiber and laminar structure

Conductivity tensors:

$$
D_{i, e}(\mathbf{x})=\sigma_{l}^{i, e} \mathbf{a}_{/} \mathbf{a}_{l}^{T}+\sigma_{n}^{i, e} \mathbf{a}_{n} \mathbf{a}_{n}^{T}+\sigma_{t}^{i, e} \mathbf{a}_{t} \mathbf{a}_{t}^{T}
$$

$\sigma_{l}^{i, e}, \quad \sigma_{n}^{i, e}, \quad \sigma_{t}^{i, e}=$ conductivity coefficients along directions \mathbf{a}_{l} : along fiber, \mathbf{a}_{n} : normal to lamina, $\mathbf{a}_{t}=$ tangent to lamina \Rightarrow electrical conductivity depends on fiber and laminar structure

lonic membrane model:

lonic current $I_{i o n}$ and functions R, S in ODE systems are given by the chosen ionic membrane model:

- LR1, LRd00, LRd07, ... (ventricular, guinea pig)
- Shannon04, Mahajan07, ... (ventricular, rabbit)
- Ten Tusscher04, O'Hara-Rudy11, ... (ventricular, human)

2. Mechanical models of the cardiac tissue

Cardiac tissue modeled as a nonlinear elastic material. Notations:

- $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)^{T} \in \widehat{\Omega}$ undeformed cardiac domain
- $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \Omega$ deformed cardiac domain
- $\mathbf{F}(\mathbf{X}, t)=\left\{F_{i j}=\frac{\partial x_{i}}{\partial X_{j}} \quad i, j=1,2,3\right\}$ deformation gradient tensor and $J(\mathbf{X}, t)=\operatorname{det}(\mathbf{F}(\mathbf{X}, t))$
- $\mathbf{C}=\mathbf{F}^{T} \mathbf{F}$ Cauchy-Green deformation tensor
- $\mathbf{E}=\frac{1}{2}(\mathbf{C}-\mathbf{I})$ Lagrange-Green strain tensor (I identity)
- Div, div (Grad, ∇) the material, spatial divergence (gradient)

2. Mechanical models of the cardiac tissue

Cardiac tissue modeled as a nonlinear elastic material. Notations:

- $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)^{T} \in \widehat{\Omega}$ undeformed cardiac domain
- $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \Omega$ deformed cardiac domain
- $\mathbf{F}(\mathbf{X}, t)=\left\{F_{i j}=\frac{\partial x_{i}}{\partial x_{j}} \quad i, j=1,2,3\right\}$ deformation gradient tensor and $J(\mathbf{X}, t)=\operatorname{det}(\mathbf{F}(\mathbf{X}, t))$
- $\mathbf{C}=\mathbf{F}^{T} \mathbf{F}$ Cauchy-Green deformation tensor
- $\mathbf{E}=\frac{1}{2}(\mathbf{C}-\mathbf{I})$ Lagrange-Green strain tensor (I identity)
- Div, div (Grad, ∇) the material, spatial divergence (gradient)

Equilibrium equations

deformed body	undeformed body
$\operatorname{div} \boldsymbol{\sigma}=0, \quad \mathbf{x} \in \Omega$,	$\operatorname{Div}(\mathbf{S F})=0 \quad \mathbf{X} \in \widehat{\Omega}$,

with $\mathbf{S}=\left\{S_{i j}\right\}=J \mathbf{F}^{-1} \boldsymbol{\sigma} \mathbf{F}^{-T}=$ 2nd Piola-Kirchhoff stress tensor
a) Active stress assumption: \mathbf{S} is the sum of

- an active biochemically generated component $\mathbf{S}^{\text {act }}$,
- a passive elastic component $\mathbf{S}^{\text {pas }}$,
- a volume component $\mathbf{S}^{\text {vol }}$,

$$
\mathbf{S}=\mathbf{S}^{a c t}+\mathbf{S}^{p a s}+\mathbf{S}^{v o l}
$$

Most used in the literature: Nash and Hunter 2000, Vetter and McCulloch 2000; Kerckhoffs et al. 2003; Nash and Panfilov 2004; Sainte-Marie 2006;
Pathmanathan and Whiteley 2009; Gotkepe and Kuhl 2010; Jie, Gurev and Trayanova 2010; Niederer, Nash, Hunter, Smith 2011; ...
a) Active stress assumption: \mathbf{S} is the sum of

- an active biochemically generated component $\mathbf{S}^{a c t}$,
- a passive elastic component $\mathbf{S}^{\text {pas }}$,
- a volume component $\mathbf{S}^{\text {vol }}$,

$$
\mathbf{S}=\mathbf{S}^{a c t}+\mathbf{S}^{p a s}+\mathbf{S}^{v o l}
$$

Most used in the literature: Nash and Hunter 2000, Vetter and McCulloch 2000; Kerckhoffs et al. 2003; Nash and Panfilov 2004; Sainte-Marie 2006;
Pathmanathan and Whiteley 2009; Gotkepe and Kuhl 2010; Jie, Gurev and Trayanova 2010; Niederer, Nash, Hunter, Smith 2011; ...
b) Active strain alternative assumption: multiplicative strategy for combining the passive $\mathbf{S}^{\text {pas }}$ and active $\mathbf{S}^{\text {act }}$ components, Cherubini et al 2008, then used by Ambrosi et al. 2011, Nobile, Quarteroni and Ruiz-Baier 2012, Rossi et al. 2012...
canine biventricular geometry from Ayache et al. 2007, orthotropic constitutive law from Holzapfel \& Ogden 2009

Rossi, Ruiz-Baier, LFP, Quarteroni, IJNMBE 28, 2012

2.1 Models of active tension

a) $T_{a}=T_{a}\left(t, C a_{i}\right)$ depends only on $C a_{i}$

$$
\frac{d T_{a}}{d t}=\epsilon\left(C a_{i}\right)\left[\eta\left(\left[C a_{i}-C a_{i}^{\text {rest }}\right)-T_{a}\right]\right.
$$

where $\epsilon\left(C a_{i}\right)=\epsilon_{0}+\left(\epsilon_{\infty}-\epsilon_{0}\right) \exp \left(-\exp \left(-\xi\left(C a_{i}-C a_{i}^{\text {rest }}\right)\right)\right)$
(Kuhl et al., PBMB 2012, smooth variant of Nash, Panfilov, IJNMBE 2004)

2.1 Models of active tension

a) $T_{a}=T_{a}\left(t, C_{a}\right)$ depends only on C_{a}

$$
\frac{d T_{a}}{d t}=\epsilon\left(C_{a_{i}}\right)\left[\eta\left(\left[C_{a_{i}}-C a_{i}^{\text {rest }}\right)-T_{a}\right]\right.
$$

where $\epsilon\left(C_{a_{i}}\right)=\epsilon_{0}+\left(\epsilon_{\infty}-\epsilon_{0}\right) \exp \left(-\exp \left(-\xi\left(C a_{i}-C a_{i}^{\text {rest }}\right)\right)\right)$
(Kuhl et al., PBMB 2012, smooth variant of Nash, Panfilov, IJNMBE 2004)
b) $T_{a}=T_{a}\left(C_{a}, \lambda\right)$ depends on $C_{a_{i}}$ and fiber stretch $\lambda=\sqrt{\hat{\mathbf{a}}_{l}^{T} \mathbf{C} \hat{a}_{l}}$

$$
T_{a}=\frac{C a_{i}^{n}}{C a_{i}^{n}+C_{50}^{n}} T_{a}^{\max }(1+\eta(\lambda-1))
$$

(Hunter et al. 1997)

2.1 Models of active tension

a) $T_{a}=T_{a}\left(t, C a_{i}\right)$ depends only on $C a_{i}$

$$
\frac{d T_{a}}{d t}=\epsilon\left(C a_{i}\right)\left[\eta\left(\left[C a_{i}-C a_{i}^{r e s t}\right)-T_{a}\right]\right.
$$

where $\epsilon\left(C a_{i}\right)=\epsilon_{0}+\left(\epsilon_{\infty}-\epsilon_{0}\right) \exp \left(-\exp \left(-\xi\left(C a_{i}-C a_{i}^{\text {rest }}\right)\right)\right)$
(Kuhl et al., PBMB 2012, smooth variant of Nash, Panfilov, IJNMBE 2004)
b) $T_{a}=T_{a}\left(C a_{i}, \lambda\right)$ depends on $C a_{i}$ and fiber stretch $\lambda=\sqrt{\hat{\mathbf{a}}_{l}^{T} \mathbf{C} \hat{\mathbf{a}}_{l}}$

$$
T_{a}=\frac{C a_{i}^{n}}{C a_{i}^{n}+C_{50}^{n}} T_{a}^{\max }(1+\eta(\lambda-1)) \quad \text { (Hunter et al. 1997) }
$$

c) $T_{a}=T_{a}\left(C a_{i}, \lambda, \frac{d \lambda}{d t}\right)$ depends on $C a_{i}$, stretch and stretch-rate system of 4 ODEs
(Land et al. J. Physiol, 2012)

Active stress tensor

We assume that the generated active force acts only in the direction of the fiber (Pathmanathan et al. 2009, Whiteley 2007, Goktepek et al. 2010) hence the active Cauchy stress is expressed as

$$
\sigma^{a c t}(\mathbf{x}, t)=J^{-1} T_{a} \mathbf{a}_{l}(\mathbf{x}) \otimes \mathbf{a}_{l}(\mathbf{x})
$$

with $\mathbf{a}_{/}(\mathbf{x})=$ unit vector parallel to the local fiber direction $/$ and $T_{a}=$ the active fiber stress related to the deformed domain.

Active stress tensor

We assume that the generated active force acts only in the direction of the fiber (Pathmanathan et al. 2009, Whiteley 2007, Goktepek et al. 2010) hence the active Cauchy stress is expressed as

$$
\sigma^{a c t}(\mathbf{x}, t)=J^{-1} T_{a} \mathbf{a}_{l}(\mathbf{x}) \otimes \mathbf{a}_{l}(\mathbf{x})
$$

with $\mathbf{a}_{/}(\mathbf{x})=$ unit vector parallel to the local fiber direction I and $T_{a}=$ the active fiber stress related to the deformed domain.

Then, the second Piola-Kirchhoff active stress component is:

$$
\mathbf{S}^{a c t}(\mathbf{X}, t)=J \mathbf{F}^{-1} \boldsymbol{\sigma}^{a c t} \mathbf{F}^{-T}=\hat{T}_{a} \frac{\hat{\mathbf{a}}_{l} \otimes \hat{\mathbf{a}}_{l}}{\hat{\mathbf{a}}_{l}^{T} \mathbf{C} \hat{\mathbf{a}}_{l}}, \quad\left(\mathbf{a}_{l}=\frac{\mathbf{F} \hat{\mathbf{a}}_{l}}{\left|\mathbf{F} \hat{\mathbf{a}}_{l}\right|}\right)
$$

Active components in the directions $\mathbf{a}_{t}, \mathbf{a}_{n}$ can be also considered.

2.2 Passive component

The passive myocardium is modeled as an almost-incompressible transversely isotropic hyperelastic material with the exponential strain-energy function (Vetter and McCulloch 2000):

$$
W^{p a s}=\frac{1}{2} c\left(e^{Q}-1\right),
$$

$$
Q=b_{1} E_{l l}^{2}+b_{2}\left(E_{t t}^{2}+E_{n n}^{2}+2 E_{t n}^{2}\right)+2 b_{3}\left(E_{l t}^{2}+E_{l n}^{2}\right),
$$

where $E_{r s}=\hat{\mathbf{a}}_{r}^{T} \mathbf{E} \hat{\mathbf{a}}_{s}, \quad r, s \in\{I, t, n\}$ with local fiber coordinate system with directions I (along fiber), n (across fiber), t (radial transmural)

2.2 Passive component

The passive myocardium is modeled as an almost-incompressible transversely isotropic hyperelastic material with the exponential strain-energy function (Vetter and McCulloch 2000):

$$
W^{p a s}=\frac{1}{2} c\left(e^{Q}-1\right),
$$

$$
Q=b_{1} E_{l l}^{2}+b_{2}\left(E_{t t}^{2}+E_{n n}^{2}+2 E_{t n}^{2}\right)+2 b_{3}\left(E_{l t}^{2}+E_{l n}^{2}\right),
$$

where $E_{r s}=\hat{\mathbf{a}}_{r}^{T} \mathbf{E} \hat{\mathbf{a}}_{s}, \quad r, s \in\{I, t, n\}$ with local fiber coordinate system with directions I (along fiber), n (across fiber), t (radial transmural)
Almost-incompressibility enforced by adding to the strain energy a volumetric term depending on a bulk modulus K :

$$
W^{\mathrm{vol}}=K(\sqrt{J}-1)^{2} \text { or } W^{\mathrm{vol}}=K \frac{J^{2}-1-2 \ln J}{4}
$$

Passive and volumetric stress tensors

In the local fiber coordinate system of the reference configuration, the passive and volumetric components of the 2nd Piola Kirchhoff stress tensor are

$$
S_{r s}^{\text {pas }}=\frac{1}{2}\left(\frac{\partial W^{\text {pas }}}{\partial E_{r s}}+\frac{\partial W^{\text {pas }}}{\partial E_{s r}}\right), \quad r, s \in\{I, t, n\}
$$

$$
S_{r s}^{\mathrm{vol}}=\frac{1}{2}\left(\frac{\partial W^{\mathrm{vol}}}{\partial E_{r s}}+\frac{\partial W^{\mathrm{vol}}}{\partial E_{s r}}\right), \quad r, s \in\{I, t, n\} .
$$

2.3 The Bidomain model on the undeformed domain $\hat{\Omega}$

P-P formulation

$$
\left\{\begin{array}{l}
\chi\left(C_{m} \frac{\partial v}{\partial t}+I_{i o n}^{m e}\right)-\frac{1}{J} \operatorname{Div}\left(J \mathbf{F}^{-1} D_{i} \mathbf{F}^{-T} \operatorname{Grad} u_{i}\right)=0 \\
-\chi\left(C_{m} \frac{\partial v}{\partial t}+I_{i o n}^{m e}\right)-\frac{1}{J} \operatorname{Div}\left(J \mathbf{F}^{-1} D_{e} \mathbf{F}^{-T} \operatorname{Grad} u_{e}\right)=l_{a p p}^{e} \\
\frac{\partial w}{\partial t}=R(v, w), \frac{\partial c}{\partial t}=S(v, w, c),
\end{array}\right.
$$

Mechano-electric feedback: deformation affects bioelectric phenomena, mostly during the repolarization phase.

- Conductivity coefficients modified with deformation gradient tensor $\mathbf{F}(\mathbf{X}, t)$ and $J(\mathbf{X}, t)$
- ionic term $I_{i o n}^{m e}(v, w, c, \lambda)=I_{i o n}+I_{S A C}$ augmented with the stretch-activated current $I_{S A C}(v, \lambda)$
- possible presence of a convective term dependent on the velocity field $\mathbf{V}=\frac{\partial \mathbf{x}(\mathbf{X}, \mathbf{t})}{\partial \mathbf{t}}$ of the deformation field.

3. Discrete problem

3.1 Splitting and IMEX method in time: given $v^{n}, w^{n}, c^{n}, \mathbf{x}^{n}, \mathbf{F}^{n}$,
a. Solve the membrane model with a first order IMEX method
to compute the new w^{n+1}, c^{n+1}, in particular Ca_{i}^{n+1}

3. Discrete problem

3.1 Splitting and IMEX method in time: given $v^{n}, w^{n}, c^{n}, \mathbf{x}^{n}, \mathbf{F}^{n}$,
a. Solve the membrane model with a first order IMEX method
to compute the new w^{n+1}, c^{n+1}, in particular Ca_{i}^{n+1}
b. Solve the coupled active tension and mechanical models to compute new deformed coordinates \mathbf{x}^{n+1}, providing the new deformation gradient tensor \mathbf{F}^{n+1} and active tension T_{a}^{n+1},

3. Discrete problem

3.1 Splitting and IMEX method in time: given $v^{n}, w^{n}, c^{n}, \mathbf{x}^{n}, \mathbf{F}^{n}$,
a. Solve the membrane model with a first order IMEX method
to compute the new w^{n+1}, c^{n+1}, in particular Ca_{i}^{n+1}
b. Solve the coupled active tension and mechanical models to compute new deformed coordinates \mathbf{x}^{n+1}, providing the new deformation gradient tensor \mathbf{F}^{n+1} and active tension T_{a}^{n+1},
c. Solve the Bidomain system. Given $w^{n+1}, c^{n+1}, x^{n+1}, F^{n+1}$,
compute the new electric potentials u_{i}^{n+1}, u_{e}^{n+1},
$v^{n+1}=u_{i}^{n+1}-u_{e}^{n+1}$

3. Discrete problem

3.1 Splitting and IMEX method in time: given $v^{n}, w^{n}, c^{n}, \mathbf{x}^{n}, \mathbf{F}^{n}$,
a. Solve the membrane model with a first order IMEX method
to compute the new w^{n+1}, c^{n+1}, in particular Ca_{i}^{n+1}
b. Solve the coupled active tension and mechanical models
to compute new deformed coordinates \mathbf{x}^{n+1}, providing the new deformation gradient tensor \mathbf{F}^{n+1} and active tension T_{a}^{n+1},
c. Solve the Bidomain system. Given $w^{n+1}, c^{n+1}, x^{n+1}, F^{n+1}$,
compute the new electric potentials u_{i}^{n+1}, u_{e}^{n+1},
$v^{n+1}=u_{i}^{n+1}-u_{e}^{n+1}$
$3.2 \mathbf{Q}^{1}$ isoparametric FEM in space, structured meshes

3.3 Parallel Mechanical/Bidomain solvers at each time step

- mechanical problem (nonlinear system):
- outer iteration: Newton method
- inner iteration (Jacobian system): GMRES, preconditioned by
- preconditioner: Algebraic Multigrid (BoomerAMG, Henson and Yang, 2002) or BDDC

3.3 Parallel Mechanical/Bidomain solvers at each time step

- mechanical problem (nonlinear system):
- outer iteration: Newton method
- inner iteration (Jacobian system): GMRES, preconditioned by
- preconditioner: Algebraic Multigrid (BoomerAMG, Henson and Yang, 2002) or BDDC
- Bidomain model (linear system):
- Preconditioned Conjugate Gradient (PCG) method
- preconditioner: Multilevel Hybrid Schwarz or BDDC

3.3 Parallel Mechanical/Bidomain solvers at each time step

- mechanical problem (nonlinear system):
- outer iteration: Newton method
- inner iteration (Jacobian system): GMRES, preconditioned by
- preconditioner: Algebraic Multigrid (BoomerAMG, Henson and Yang, 2002) or BDDC
- Bidomain model (linear system):
- Preconditioned Conjugate Gradient (PCG) method
- preconditioner: Multilevel Hybrid Schwarz or BDDC
- Parallel libraries: MPI, PETSc (Argonne NL), BoomerAMG (within HYPRE library, Lawrence Livermore NL)

3.3 Parallel Mechanical/Bidomain solvers at each time step

- mechanical problem (nonlinear system):
- outer iteration: Newton method
- inner iteration (Jacobian system): GMRES, preconditioned by
- preconditioner: Algebraic Multigrid (BoomerAMG, Henson and Yang, 2002) or BDDC
- Bidomain model (linear system):
- Preconditioned Conjugate Gradient (PCG) method
- preconditioner: Multilevel Hybrid Schwarz or BDDC
- Parallel libraries: MPI, PETSc (Argonne NL), BoomerAMG (within HYPRE library, Lawrence Livermore NL)
- Computational platforms:
- local clusters at Univ. of Milan/Pavia ($O\left(10^{2}\right.$) cores)
- SP6 and Fermi BG $\backslash Q$ of CINECA ($O\left(10^{3}-10^{5}\right)$ cores)

3.4 Multilevel Additive Schwarz (MAS) preconditioners

- $\mathcal{T}_{k}, k=0, \ldots, L-1$: nested triangulations of $\Omega, \mathcal{T}_{L-1}=\mathcal{T}_{h}$

$$
\mathcal{T}_{0}=4 \cdot 4 \cdot 2
$$

$\mathcal{T}_{1}=2 \mathcal{T}_{0}$

$\mathcal{T}_{2}=2 \mathcal{T}_{1} \cdots$

- $\mathcal{T}_{k}=\left\{\Omega_{k m}\right\}_{m=1}^{N_{k}}$, subdomains with overlap δ_{k} and diameter H_{k}

$\Omega_{k 2}$

$\Omega_{k 6}$

$\Omega_{k 7}$

Matrix form of MAS(L) preconditioner $\mathcal{P}_{\text {MAS }}^{-1}$:

$$
\mathcal{P}_{M A S}^{-1}=R_{0}^{T} B_{0}^{-1} R_{0}+\sum_{k=1}^{L-1} \sum_{m=1}^{N_{k}} R_{k m}^{T} B_{k m}^{-1} R_{k m}
$$

where

- $B_{k m}=$ local bidomain matrix on $\Omega_{k m}$ (level k, subdomain m)
- $R_{k m}=$ restriction matrix to nodes in $\Omega_{k m}$
- $B_{0}=$ coarse bidomain matrix on \mathcal{T}_{0}
- $R_{0}=$ restriction matrix to nodes in coarse mesh \mathcal{T}_{0}

Bidomain MAS preconditioners

Theorem: MAS(L) convergence rate bounds
The condition number of the Multilevel Additive Schwarz operator $\mathcal{P}_{\text {MAS }}^{-1} \mathcal{B}$ for the Bidomain system is bounded by

$$
\kappa_{2}\left(\mathcal{P}_{M A S}^{-1} \mathcal{B}\right) \leq C_{k=1, \ldots, L-1} \max \left(1+\frac{H_{k}}{\delta_{k}}\right)
$$

with C constant independent of:
$L=$ number of levels, $\quad \delta_{k}=$ overlap at level k,
$h_{k}=$ mesh size on level $k, \quad H_{k}\left(=h_{k-1}\right)$ subdomain diam. at level k.

Bidomain MAS preconditioners

Theorem: MAS(L) convergence rate bounds

The condition number of the Multilevel Additive Schwarz operator $\mathcal{P}_{\text {MAS }}^{-1} \mathcal{B}$ for the Bidomain system is bounded by

$$
\kappa_{2}\left(\mathcal{P}_{M A S}^{-1} \mathcal{B}\right) \leq C_{k=1, \ldots, L-1} \max \left(1+\frac{H_{k}}{\delta_{k}}\right)
$$

with C constant independent of:
$L=$ number of levels, $\quad \delta_{k}=$ overlap at level k,
$h_{k}=$ mesh size on level $k, \quad H_{k}\left(=h_{k-1}\right)$ subdomain diam. at level k.

Proof + numerical results in
LFP, S. Scacchi, SIAM J. Sci. Comp., 31 (1), 2008
Analogous scalability bound holds for decoupled NKS MAS(2)
M. Munteanu, LFP, S. Scacchi, SIAM J. Sci. Comp., 31 (5), 2009
and for PE formulation with/without block-preconditioners
LFP, S. Scacchi, SIAM J. Sci. Comp., 33 (4), 2011

4.1 Bidomain parallel results: coupled/decoupled IMEX

A) MAS(4) scalability on BlueGene/Q (Cineca), overlap $\delta=1$, ILU(0) local solvers local mesh size 32^{3} (+ overlap), 10 time steps, $\Delta t=0.05 \mathrm{~ms}$.

procs	dof	coupled			decoupled		
		$\kappa_{2}=\lambda_{M} / \lambda_{m}$	it	time	$\kappa_{2}=\lambda_{M} / \lambda_{m}$	it	time
64	$4.3 \mathrm{e}+6$	$41.8=8.7 / 2.1 \mathrm{e}-1$	43	5.6	$15.5=4.5 / 2.9 \mathrm{e}-1$	29	$1.8+1.1=2.9$
128	$8.5 \mathrm{e}+6$	$33.4=6.8 / 2.0 \mathrm{e}-1$	39	5.6	$14.9=4.5 / 3.0 \mathrm{e}-1$	28	$2.0+1.0=2.9$
256	$1.7 \mathrm{e}+7$	$36.4=6.8 / 1.9 \mathrm{e}-1$	40	5.7	$15.4=4.5 / 2.9 \mathrm{e}-1$	28	$1.9+1.0=3.0$
512	$3.3 \mathrm{e}+7$	$27.4=5.2 / 1.9 \mathrm{e}-1$	36	5.5	$14.3=4.4 / 3.0 \mathrm{e}-1$	28	$2.0+1.0=3.0$
1 K	$6.7 \mathrm{e}+7$	$29.5=5.2 / 1.7 \mathrm{e}-1$	36	5.7	$14.4=4.4 / 3.1 \mathrm{e}-1$	28	$2.2+1.0=3.2$
2 K	$1.3 \mathrm{e}+8$	$27.6=5.1 / 1.8 \mathrm{e}-1$	34	8.5	$13.2=4.3 / 3.3 \mathrm{e}-1$	27	$2.9+1.7=4.6$
4 K	$2.7 \mathrm{e}+8$	$28.9=5.1 / 1.8 \mathrm{e}-1$	34	16.3	$13.2=4.3 / 3.3 \mathrm{e}-1$	27	$5.6+3.6=9.2$
8 K	$5.4 \mathrm{e}+8$	$25.0=5.1 / 2.0 \mathrm{e}-1$	32	16.5	$12.4=4.3 / 3.5 \mathrm{e}-1$	26	$5.9+3.7=9.7$
16 K	$1.1 \mathrm{e}+9$	$26.5=5.1 / 1.9 \mathrm{e}-1$	32	17.4	$12.4=4.3 / 3.5 \mathrm{e}-1$	26	$6.2+3.8=10.1$
32 K	$2.1 \mathrm{e}+9$	out of memory					

plots from previous table:

condition number

cpu time

4.2 Mechanical solver: AMG weak scalability

- Simulation of 1.5 ms (30 time steps of $\tau=0.05 \mathrm{~ms}$) during the plateau phase on truncated ellipsoidal domains.
- Fixed local mechanical dof per subdomain: 13476

4.2 Mechanical solver: AMG weak scalability

- Simulation of 1.5 ms (30 time steps of $\tau=0.05 \mathrm{~ms}$) during the plateau phase on truncated ellipsoidal domains.
- Fixed local mechanical dof per subdomain: 13476

Mechanical solver - AMG preconditioner				
	dof	outer iter. Newton	inner iter. GMRES	CPU time
procs	107811	2	42	12.06
27	352947	2	42	16.70
64	823875	2	39	23.45
125	1594323	2	39	30.66
216	2738019	2	40	49.12
512	6440067	2	40	75.09

Mechanical solver: AMG strong scalability

Fixed global mechanical dof: 823872

	Mechanical solver - AMG preconditioner					
	procs	local dof	nit	lit	time	speedup
8	102984	2	41	110.84	-	
	16	51492	2	40	63.61	$1.74(2)$
32	25746	2	41	34.64	$3.20(4)$	
64	12873	2	39	23.26	$4.76(8)$	
128	6436	2	40	16.08	$6.89(16)$	
	256	3218	2	40	15.50	$7.15(32)$
	512	1609	2	41	16.97	$6.53(64)$
nit	$=$ Newton iterations					
it	$=$ CG iteration counts					
time	$=$ CPU time in sec. to solve mechanical pb.					

4.3 Bidomain - Multilevel Hybrid Schwarz weak scalability

Fixed local Bidomain dof per subdomain: 68656

Bidomain solver - MHS(4) preconditioner							
procs	dof	non-deforming ($\mathbf{C}=\mathbf{I}$)			deforming		
		κ_{2}	it	time	κ_{2}	it	time
8	549250	1.11	3	1.05	1.11	3	1.31
27	1825346	1.11	3	1.19	1.12	3	1.17
64	4293378	1.12	3	1.23	1.13	3	1.21
125	8346562	1.13	3	1.31	1.18	4	1.49
216	14378114	1.18	4	1.55	1.20	4	1.55
343	22781250	1.15	4	1.62	1.17	4	1.66
512	33949186	1.14	4	1.96	1.17	4	1.67

$\kappa_{2}=$ average condition number per time step
it $\quad=$ average CG iteration counts per time step
time $=$ average CPU time in seconds to solve one Bidomain linear system

Bidomain - Multilevel Hybrid Schwarz strong scalability

Fixed global Bidomain dof: 4293376

Bidomain solver $-\mathrm{MHS}(4)$ preconditioner					
procs	local dof	κ_{2}	it	time	speedup
8	536672	1.13	3	9.18	-
16	268336	1.13	3	5.16	$1.78(2)$
32	134168	1.14	3	2.62	$3.50(4)$
64	67084	1.15	3	1.30	$7.06(8)$
128	33542	1.16	4	0.72	$12.75(16)$
256	16771	1.19	4	0.48	$19.12(32)$
512	8385	1.20	4	0.26	$35.31(64)$

4.4 Whole heartbeat: ventricular wedge deformation +v

4.4 Whole heartbeat: ventricular wedge deformation +v

endo

4.4 Whole heartbeat: ventricular wedge deformation +v

endo
transmural

Whole heartbeat

Simulation of 500 ms on a truncated half ellipsoidal domain modeling half left ventricle. Number of processors $=24$

Mechanical Solver: dof $=32967$, time step $=0.25 \mathrm{~ms}$

Prec.	Newton nit	Total nit	GMRES it	Total it	time $c p u$	Tot $c p u$
AMG	3	7031	796	6.5 ML	28.42 s	$15 \mathrm{~h} \mathrm{47m}$

Whole heartbeat

Simulation of 500 ms on a truncated half ellipsoidal domain modeling half left ventricle. Number of processors $=24$

Mechanical Solver: dof $=32967$, time step $=0.25 \mathrm{~ms}$

Prec.	Newton nit	Total nit	GMRES it	Total it	time cpu	Tot cpu
AMG	3	7031	796	6.5 ML	28.42 s	15 h 47 m

Bidomain solver: dof $=9655490$, time step $=0.05 \mathrm{~ms}$

Prec.	κ_{2}	CG $_{\text {it }}$	Total $_{i t}$	time $_{\text {cpu }}$	Total $_{\text {cpu }}$
MAS(4)	6.18	8	81178	1.54 s	4 h 16 m

κ_{2} : average condition number per time step

4.5 Better mechanical solvers: BDDC strong scalability

Land - Niederer et al. active tension model
Fixed global mesh on ellipsoidal domain: $385 \times 385 \times 97$ BDDC primal constraints: $\mathrm{VE}=$ Vertex + Edges aver.

VEF $=$ Vertex + Edges aver.+ Faces aver.

Mechanical solver - BDDC preconditioner			
procs	VE nit lit time	VEF nit lit time	boomer nit lit time
64	15880.1	15782.9	18030.6
128	15328.9	14729.8	18020.7
256	$\begin{array}{llll}1 & 88 & 11.4\end{array}$	17511.6	18114.6
512	1885	1755.7	$1 \begin{array}{lll}1 & 79 & 15.4\end{array}$
1024	$1 \begin{array}{llll}1 & 59 & 3.7\end{array}$	1433.7	18028.8

Fermi $B G \backslash Q$

Mechanical model, BDDC weak scalability

Goktepe et al. active tension model
Fixed local mesh on slab domain: $20 \times 20 \times 20$
Fermi $B G \backslash Q$, nit almost always 1 (not reported)

Mechanical solver - BDDC preconditioner										
procs	V		VE		VEF		VEm		VEmF	
	lit	time								
256	94	1.0	42	0.9	38	1.1	32	1.2	26	1.2
512	90	1.1	40	1.1	37	1.3	32	1.5	26	1.5
1024	86	1.4	38	1.6	36	1.9	30	2.1	24	2.2
2048	85	2.2	38	2.9	36	3.5	30	3.9	24	4.1
4096	84	5.2	39	6.6	-	-	-	-	-	-
8192	88	16.7	-	-	-	-	-	-	-	-

$\mathrm{V}=$ Vertex, $\quad \mathrm{E}=$ Edges averages,
$F=$ Faces averages, $m=$ first order edge moments

Mechanical BDDC scalability and quasi-optimality

slab domain

ellipsoidal domain

Whole beat: mechanical BDDC with Land-Niederer T_{a}

5. Applications: epicardial APD distributions

APD, with ISAC APD, CONV term with ISAC

267.94283 .610 .78

259.78270 .940 .56
$257.46271 .37 \quad 0.70$
269.71283 .530 .69

263.51285 .351 .09

269.52291 .601 .10

259.54289 .191 .48

Transmural APD distributions

with ISAC

Epicardial waveforms (at apex)

without ISAC (black), with ISAC (red), with CONV + ISAC (blue)

Conclusions

We have developed:

Conclusions

We have developed:

- scalable and efficient Bidomain solvers using domain decomposition preconditioners (multilevel Schwarz). Decoupled NKS and IMEX methods seem more efficient than fully implicit methods.

Conclusions

We have developed:

- scalable and efficient Bidomain solvers using domain decomposition preconditioners (multilevel Schwarz). Decoupled NKS and IMEX methods seem more efficient than fully implicit methods.
- cardiac electromechanical models with transversely isotropic or orthotropic strain energy functions of exponential type; mechanical solvers (Newton-Krylov) using AMG not quite scalable, better performance with DD preconditioners

Conclusions

We have developed:

- scalable and efficient Bidomain solvers using domain decomposition preconditioners (multilevel Schwarz). Decoupled NKS and IMEX methods seem more efficient than fully implicit methods.
- cardiac electromechanical models with transversely isotropic or orthotropic strain energy functions of exponential type; mechanical solvers (Newton-Krylov) using AMG not quite scalable, better performance with DD preconditioners

Complex choice of proper submodel: ionic model, calcium dynamics, Bidomain/Monodomain, active tension, mechanical constitutive law; it depends on competing needs, e.g. biophysical accuracy vs. computational costs

Current/future work

- Study of proper coupling/decoupling strategy of submodels in order to increase numerical stability/efficiency
- effects of electromechanical feedback, stretch-activated channels, convective term on electrical quantities (mostly REPO, APD, T-wave, etc.)
- applications to reentry genesis/termination: shock waveform (mono/biphasic), energy,...
- coupling with haemodynamical models, in collaboration with A. Quarteroni's groups at MOX and EPFL

Current/future work

- Study of proper coupling/decoupling strategy of submodels in order to increase numerical stability/efficiency
- effects of electromechanical feedback, stretch-activated channels, convective term on electrical quantities (mostly REPO, APD, T-wave, etc.)
- applications to reentry genesis/termination: shock waveform (mono/biphasic), energy,...
- coupling with haemodynamical models, in collaboration with A. Quarteroni's groups at MOX and EPFL

THANK YOU

Well-posedness of the Bidomain Model

Difficult degenerate nonlinear parabolic system. For reaction term of FitzHugh-Nagumo (FHN) type:

- rigorous homogenized derivation of the Bidomain model from a periodic assembling of cellular model: Pennacchio, Savaré, Colli Franzone. SIAM J. Math. Anal. 2006.
- ex. \& uniq. of Bidomain Pb: Colli Franzone, Savaré: in Evolution equations, Semigroups and Functional Analysis, A. Lorenzi and B. Ruf, (Eds), Birkhauser, 2002 .
- using the parabolic - elliptic Bidomain formulation: Y. Bourgault et al., Nonlin. Anal., 2009
- extension to nonlinear monotone diffusion and time-space dependent reactions of FHN type: M. Bendahmane, K. Karlsen, Netw. Heter. Media, 2006., + Boulakia e al., 2009.

Well-posedness of the Bidomain Model

Difficult degenerate nonlinear parabolic system. For reaction term of FitzHugh-Nagumo (FHN) type:

- rigorous homogenized derivation of the Bidomain model from a periodic assembling of cellular model: Pennacchio, Savaré, Colli Franzone. SIAM J. Math. Anal. 2006.
- ex. \& uniq. of Bidomain Pb: Colli Franzone, Savaré: in Evolution equations, Semigroups and Functional Analysis, A. Lorenzi and B. Ruf, (Eds), Birkhauser, 2002 .
- using the parabolic - elliptic Bidomain formulation: Y. Bourgault et al., Nonlin. Anal., 2009
- extension to nonlinear monotone diffusion and time-space dependent reactions of FHN type: M. Bendahmane, K. Karlsen, Netw. Heter. Media, 2006., + Boulakia e al., 2009.
For more general ionic current membrane dynamics, i.e. Hodgkin-Huxley, Luo-Rudy 1 and partially LR2, LRd00 models: M. Veneroni, Nonlin. Anal. 2009.

Well-posedness of the electro-mechanical system

- For a passive, strongly elliptic, store-energy function $W^{\text {pas }}$ and for simplest active tensions $T_{a}=T_{a}\left(t, C a_{i}\right)$ (stretch and stretch-rate independent) then the mechanical model is well-posed.
- For general active tension models, the well-posedness of the mechanical model is an open problem,
- The well-posedness of the electro-mechanical coupled model is an open problem.

New book from Springer

Volume 13

Mathematical Cardiac Eectrophysiology

Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi
This book covers the man mashematica and numerical modeds in computational electrocardicogy

 and are employed in both the direct and inveres problems of electrocardioiogy.
The book also opvers xvencod numerica tecchiques noxded to eff cently cary yul largeserale
 illustring the excitaion mectianisns the anisotropic effieds on excatation and repolaizzion wavefronts the morphology of electrograms in nomal and pathological tissue and some reentry
phenomena phenomera
The overal aim ot the book is to present frogrousy the mathemxica and numerica foundations of
 biomexione his book is addresed to graduse student and reseachers in the eld of applied mathemaics soientifc computing, bioengineering, electrophysiology and cardicogy.

1/S8. A

Sories Eilitors

Alio Cuarteroni (Exitio-in-Chise) - Tom Hou - Caude Le Bis' • Anthony T.Patera• Enique Zuazua
 of the modeing and smulation prian
risvant problensin everydey life
Matrematical modesing a ms to describe through methensics the different aspects α the real world, ther

 innovition.

Mathemstics

ISN $978-3-319-04800-0$

